Trong không gian với hệ tọa độ Oxyz, cho ba vec tơ a → ( 1 ; m ; 2 ) ; b → m + 1 ; 2 ; 1 ; c → 0 ; m - 2 ; 2 . Giá trị của m để a → , b → , c → đồng phẳng là:
A. 2 5
B. - 2 5
C. 1 5
D. 1
Trong không gian với hệ tọa độ Oxyz cho hai véc tơ a → = 3 ; 0 ; 2 , c → = 1 ; − 1 ; 0 . Tìm tọa độ của véc tơ b → thỏa mãn biểu thức 2 b → − a → + 4 c → = 0 →
A. 1 2 ; − 2 ; − 1
B. − 1 2 ; 2 ; 1
C. − 1 2 ; − 2 ; 1
D. − 1 2 ; 2 ; − 1
Trong không gian với hệ tọa độ Oxyz, cho hai điểm M( 1; -1; -2), N(3; 5; 7). Tính tọa độ của véc tơ M N → .
A. M N → = ( 2 ; 9 ; 6 )
B. M N → = ( 2 ; 6 ; 9 )
C. M N → = ( 6 ; 2 ; 9 )
D. M N → = ( 6 ; 2 ; - 9 )
Trong không gian với hệ tọa độ Oxyz, cho 3 vectơ a → = 1 ; m ; 2 , b → = m + 1 ; 2 ; 1 , c → = 0 ; m − 2 ; 2 . Điều kiện của m để 3 vectơ đã cho đồng phẳng là
A. m = 0
B. m = 2 5 m = 1
C. m = 1
D. m = 2 5
Trong không gian với hệ trục tọa độ Oxyz, cho hai vectơ a → = 3 ; - 2 ; m , b → = 2 ; m ; - 1 . Giá trị thực của tham số m để hai vectơ a → và b ⇀ vuông góc với nhau là
A. m=2
B. m=1
C. m=-2
D. m=-1
Trong không gian với hệ tọa độ Oxyz, cho mặt cầu ( S ) : x 2 + y 2 + z 2 − 2 x + 4 z + 1 = 0 và đường thẳng ( d ) : x − 2 − 1 = y 1 = z − m 1 . Tìm m để cắt tại hai điểm phân biệt A, B sao cho các tiếp diện của tại A và B vuông góc với nhau.
A. m = 1 hoặc m = 4
B. m = –1 hoặc m = –4.
C. m = 0 hoặc m = –1.
D. m = 0 hoặc m = –4.
Trong không gian với hệ tọa độ Oxyz, cho hai véc tơ a → = ( 1 ; - 1 ; 2 ) và b → = ( 2 ; 1 ; - 1 ) . Tính a → . b →
A. a → . b → = ( 2 ; - 1 ; - 2 )
B. a → . b → = (1;5;3)
C. a → . b → = 1
D. a → . b → = -1
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng P : x + y + z - 1 = 0 và hai điểm A ( 1;-3;0 ), B ( 5;-1;-2 ). Điểm m ( a;b;c ) trên mặt phẳng (P) sao cho M A - M B đạt giá trị lớn nhất. Tính tổng a + b + c
A. 1
B. 11
C. 5
D. 6
Trong không gian Oxyz, cho hai điểm M(1;-1;-2), N(3;5;7). Tọa độ của véc tơ M N → là
A. (2;9;6)
B. (2;6;9)
C. (6;2;9)
D. (9;2;6)