Trong không gian với hệ toạ độ Oxyz, cho điểm H 1 ; 2 ; − 2 . Gọi (P) là mặt phẳng đi qua H và cắt các trục Ox, Oy, Oz tại các điểm A, B, C sao cho H là trực tâm của tam giác ABC. Viết phương trình mặt cầu tâm O và tiếp xúc với mặt phẳng (P)?
A. x 2 + y 2 + z 2 = 81
B. x 2 + y 2 + z 2 = 3
C. x 2 + y 2 + z 2 = 9
D. x 2 + y 2 + z 2 = 25
Trong không gian Oxyz, cho các điểm A, B, C (không trùng O) lần lượt thay đổi trên các trục Ox, Oy, Oz và luôn thỏa mãn điều kiện : tỉ số giữa diện tích của tam giác ABC và thể tích khối OABC bằng 3 2 Biết rằng mặt phẳng (ABC) luôn tiếp xúc với một mặt cầu cố định, bán kính của mặt cầu đó bằng :
A. 3
B. 2
C. 4
D. 1
Trong không gian với hệ toạ độ Oxyz, cho điểm M(3;2;l). Mặt phẳng (P) đi qua M và cắt các trục toạ độ Ox,Oy,Oz lần lượt tại các điểm A, B, C không trùng với gốc toạ độ sao cho M là trực tâm của tam giác ABC. Trong các mặt phẳng sau, tìm mặt phẳng song song với mặt phẳng (P).
A. 3x+2y+z+14= 0
B. 2x+y+3z+9= 0
C. 3x+2y+z-14= 0
D. 2x+y+z-9= 0
Trong không gian với hệ trục tọa độ Oxyz, cho mặt cầu S : x 2 + y 2 + z 2 = 3 . Một mặt phẳng (P) tiếp xúc với mặt cầu và cắt các tia Ox, Oy, Oz lần lượt tại A, B, C (A, B, C không trùng với gốc tọa độ O) thỏa mãn O A 2 + O B 2 + O C 2 = 27 . Diện tích của tam giác ABC bằng
A. 3 3 2 .
B. 9 3 2 .
C. 9 3 .
D. 3 3
Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng ( α ) : bc . x + ac . y + ab . z - abc = 0 với a, b, c là các số khác 0 thỏa mãn 1 a + 2 b + 3 c = 7 . Gọi A, B, C lần lượt là giao điểm của α với các trục tọa độ Ox, Oy, Oz. Biết mặt phẳng α tiếp xúc với mặt cầu (S): ( x - 1 ) 2 + ( y - 2 ) 2 + ( z - 3 ) 2 = 72 7 . Thể tích khối OABC với O là gốc tọa độ bằng
A. 2 9
B. 3 4
C. 1 8
D. 4 3
Trong không gian với hệ toạ độ Oxyz, có bao nhiêu mặt phẳng qua điểm M(1;1;2) và cắt trục trục toạ độ x′Ox, y′Oy,z′Oz lần lượt tại A,B,C khác gốc toạ độ O sao cho OA,OB,OC theo thứ tự lập thành một cấp số nhân và thể tích khối tứ diện OABC bằng 32 3 .
A. 3.
B. 5.
C. 2.
D. 4.
Trong không gian với hệ toạ độ Oxyz, cho đường thẳng d: x = 1 - 2 a + a t y = - 2 + 2 a + 1 - a t z = 1 + t . Biết rằng khi a thay đổi luôn tồn tại một mặt cầu cố định đi qua điểm M(1;1;1) và tiếp xúc với đường thẳng d. Tính bán kính R của mặt cầu đó.
A. R = 5 6
B. R = 6 3 5
C. R = 6 5
D. R = 5 3 6
Trong không gian với hệ toạ độ Oxyz, cho ba điểm A(1;0;0), B(0;2;0), C(0;0;3). Mặt cầu tâm I(2;2;2) tiếp xúc với mặt phẳng (ABC) có bán kính bằng
A. 4.
B. 14 3 .
C. 4 14 21 .
D. 16 7 .
Trong không gian với hệ toạ độ Oxyz, cho điểm M(4;3;2). Có bao nhiêu mặt phẳng qua M cắt ba trục toạ độ Ox,Oy,Oz lần lượt tại A,B,C sao cho 6OA=2OB=3OC>0.
A. 8.
B. 1.
C. 3.
D. 4.