Trong không gian Oxyz, cho mặt phẳng (P) đi qua điểm M(1;2;3) và cắt các trục Ox, Oy, Oz lần lượt tại các điểm A, B, C. Viết phương trình mặt phẳng (P) sao cho M là trực tâm của tam giác ABC.
A. x 1 + y 2 + z 3 = 3
B. 6 x + 3 y − 2 z − 6 = 0
C. x + 2 y + 3 z − 14 = 0
D. x + 2 y + 3 z − 11 = 0
Trong không gian Oxyz cho điểm M(1;2;3). Phương trình mặt phẳng (P) đi qua M cắt các trục tọa độ Ox; Oy; Oz lần lượt tại A, B, C sao cho M là trong tâm của tam giác ABC là
A. (P):6x + 3y + 2z + 18 = 0
B. (P):6x + 3y + 2z + 6 = 0
C. (P):6x + 3y + 2z - 18 = 0
D. (P):6x + 3y + 2z - 6 = 0
Trong không gian với hệ trục tọa độ Oxyz, cho điểm G(1;2;3). Mặt phẳng đi qua G cắt Ox, Oy, Oz lần lượt tại A, B, C sao cho G là trọng tâm của tam giác ABC. Viết phương trình mặt phẳng α
A. α : x 2 + y 4 + z 6 = 1
B. α : x 3 + y 2 + z 1 = 1
C. α : x 1 + y 2 + z 3 = 1
D. α : x 3 + y 6 + z 9 = 1
Trong không gian Oxyz cho điểm M 1 ; 2 ; 3 . Viết phương trình mặt phẳng (P) đi qua M cắt các trục tọa độ Ox, Oy, Oz lần lượt tại A, B, C sao cho M là trọng tâm của tam giác ABC.
A. P : 6 x + 3 y + 2 z + 18 = 0
B. P : 6 x + 3 y + 2 z + 6 = 0
C. P : 6 x + 3 y + 2 z - 18 = 0
D. P : 6 x + 3 y + 2 z - 6 = 0
Trong không gian Oxyz cho điểm M 1 ; 2 ; 3 . Viết phương trình mặt phẳng P đi qua M cắt các trục tọa độ Ox, Oy, Oz lần lượt tại A, B, C sao cho M là trọng tâm của tam giác ABC.
A. P : 6 x + 3 y + 2 z + 18 = 0
B. P : 6 x + 3 y + 2 z + 6 = 0
C. P : 6 x + 3 y + 2 z - 18 = 0
D. P : 6 x + 3 y + 2 z - 6 = 0
Trong không gian Oxyz, cho hai điểm M 1 ; 2 ; 3 , A 2 ; 4 ; 4 và hai mặt phẳng Q : x - 2 y - z + 4 = 0 , P : x + y - 2 z + 1 = 0 . Đường thẳng ∆ đi qua điểm M, cắt hai mặt phẳng P , Q lần lượt tại B và C a ; b ; c sao cho tam giác ABC cân tại A và nhận AM làm đường trung tuyến. Tính T = a + b + c .
A. T = 9
B. T = 3
C. T = 7
D. T = 5
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P) đi qua điểm M 1 ; 2 ; 3 và cắt các trục Ox, Oy, Oz lần lượt tại các điểm A, B, C (khác O). Viết phương trình mặt phẳng (P) sao cho M là trực tâm của tam giác ABC.
A. 6 x + 3 y − 2 z − 6 = 0
B. x + 2 y + 3 z − 14 = 0
C. x + 2 y + 3 z − 11 = 0
D. x 1 + y 2 + z 3 = 3
Trong không gian với hệ toạ độ Oxyz, cho điểm M(4;3;2). Có bao nhiêu mặt phẳng qua M cắt ba trục toạ độ Ox,Oy,Oz lần lượt tại A,B,C sao cho 6OA=2OB=3OC>0.
A. 8.
B. 1.
C. 3.
D. 4.
Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S): x 2 + y 2 + z 2 - 2 x + 2 y + 3 z = 0 . Các điểm A, B, C lần lượt là giao điểm (khác gốc tọa độ) của mặt cầu (S) và các trục tọa độ Ox, Oy, Oz. Phương trình mặt phẳng (ABC) là