Chọn đáp án C
Đường thẳng ∆ đi qua điểm M 0 1 ; 1 ; 0 và có vec-tơ chỉ phương là u ⇀ = 1 ; 1 ; - 1
Khoảng cách từ điểm M đến đường thẳng ∆ là
Chọn đáp án C
Đường thẳng ∆ đi qua điểm M 0 1 ; 1 ; 0 và có vec-tơ chỉ phương là u ⇀ = 1 ; 1 ; - 1
Khoảng cách từ điểm M đến đường thẳng ∆ là
Trong không gian Oxyz , cho điểm A 2 ; - 1 ; 0 và đường thẳng Δ : x - 1 2 = y + 1 1 = z - 2 - 1 . . Khoảng cách từ điểm A đến đường thẳng D bằng
A. 7
B. 3
C. 7 3
D. 7 3
Trong không gian với hệ tọa độ Oxyz, cho hai điểm A (1;-2;-3); B(1;1;1) và hai đường thẳng ∆ 1 : x - 2 1 = y - 2 4 = z + 6 - 3 ; ∆ 2 : x - 2 1 = y + 3 - 4 = z - 4 3 . Gọi m là số mặt phẳng (P) tiếp xúc với mặt cầu đường kính AB đồng thời song song với cả hai đường thẳng ∆1;∆2; n là số mặt phẳng (Q), sao cho khoảng cách từ A đến (Q) bằng 15, khoảng cách từ B đến (Q) bằng 10. Chọn mệnh đề đúng trong các mệnh đề sau.
A. m + n = 1
B. m + n = 4
C. m + n = 3
D. m + n = 2
Trong không gian Oxyz, cho điểm A(2;5;3) và đường thẳng d : x - 1 2 = y 1 = z - 2 2 . Gọi (P) là mặt phẳng chứa đường thẳng d sao cho khoảng cách từ điểm A đến (P) lớn nhất. Khoảng cách từ điểm M(1; 2; -1) đến mặt phẳng (P) bằng
A. 11 2 6
B. 3 2
C. 11 18
D. 7 2 6
Trong không gian Oxyz cho đường thẳng d: x 2 = y 2 = z + 3 - 1 và mặt cầu (S): ( x - 3 ) 2 + ( y - 2 ) 2 + ( z - 5 ) 2 = 36 . Gọi Δ là đường thẳng đi qua A(2;1;3) vuông góc với đường thẳng (d) và cắt (S) tại 2 điểm có khoảng cách lớn nhất. Khi đó đường thẳng Δ có một vectơ chỉ phương là u → ( 1 ; a ; b ) . Tính a + b
A. 4
B. -2
C. - 1 2
D. 5
Trong không gian với hệ trục tọa độ Oxyz, cho điểm A(1;2;3) và đường thẳng (d): x - 2 2 = y + 2 - 1 = z - 3 1 . Gọi điểm B thuộc trục Ox sao cho AB vuông góc với đường thẳng (d). Khoảng cách từ B đến mặt phẳng ( α ): 2x+2y-z-1=0 là:
A. 2
B. 2 3
C. 1 3
D. 1
Trong không gian Oxyz, cho đường thẳng d: x - 2 1 = y - 1 - 2 = z - 1 2 và hai điểm A(3;2;1), B(2;0;4). Gọi ∆ là đường thẳng qua A, vuông góc với d sao cho khoảng cách từ B đến ∆ là nhỏ nhất. Gọi u → = 2 ; b ; c là một VTCP của ∆. Khi đó , u → bằng
A. 17
B. 5
C. 6
D. 3
Trong không gian với hệ trục tọa độ Oxyz, cho d : x - 3 2 = y + 2 1 = z + 1 - 1 và P : x + y + z + 2 = 0 . Có bao nhiêu đường thẳng ∆ nằm trong mặt phẳng (P) mà ∆ ⊥ d và khoảng cách từ M đến ∆ bằng 42 . Biết M là giao điểm của (P) và d.
A. 2
B. 0
C. 1
D. 4
Trong không gian với hệ tọa độ Oxyz, cho ba điểm A - 2 ; 1 ; 0 , B 4 ; 4 ; - 3 , C 2 ; 3 ; - 2 và đường thẳng d : x - 1 1 = y - 1 - 2 = z - 1 - 1 . Gọi α là mặt phẳng chứa d sao cho A, B, C ở cùng phía đối với mặt phẳng α . Gọi d 1 , d 2 , d 3 lần lượt là khoảng cách từ A, B, C đến α . Tìm giá trị lớn nhất của T = d 1 + 2 d 2 + 3 d 3 .
A. T m a x = 2 21
B. T m a x = 6 14
C. T m a x = 14 + 203 3 + 3 21
D. T m a x = 203
Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d: x - 3 2 = y + 2 1 = z + 1 - 1 và mặt phẳng (P): x + y + z + 2 = 0. Đường thẳng ∆ nằm trong mặt phẳng (P), vuông góc với đường thẳng d đồng thời khoảng cách từ giao điểm I của d với (P) đến ∆ bằng 42 . Gọi M(5;b;c) là hình chiếu vuông góc của I trên ∆. Giá trị của bc bằng
A. - 10
B. 10
C. 12
D. - 20