Trong không gian Oxyz, phương trình của mặt phẳng (P) đi qua điểm B(2;1;-3), đồng thời vuông góc với hai mặt phẳng (Q): x+y+3z=0, (R): 2x-y+z=0 là:
A. 2x+y-3z-14=0
B. 4x+5y-3z+22=0
C. 4x+5y-3z-22=0
D. 4x-5y-3z-12=0
Trong không gian với hệ trục tọa độ Oxyz, phương trình mặt phẳng (P) đi qua điểm A(2;1;-3), đồng thời vuông góc với hai mặt phẳng (Q): x+y+3z=0, (R): 2x-y+z=0 là
A. 4x + 5y – 3z + 22 = 0.
B. 4x – 5y – 3z -12 =0
C. 2x + y – 3z – 14 = 0.
D. 4x + 5y – 3z – 22 = 0
Trong không gian Oxyz, phương trình mặt phẳng (P) đi qua điểm B 2 ; 1 ; - 3 đồng thời vuông góc với hai mặt phẳng Q : x + y + 3 z = 0 và R : 2 x - y + z = 0 là
A. 4 x + 5 y - 3 z - 22 = 0
B. 4 x - 5 y - 3 z - 12 = 0
C. x + y - 3 z - 14 = 0
D. 4 x + 5 y - 3 z + 22 = 0
Trong không gian với hệ trục tọa độ Oxyz, phương trình của mặt phẳng (P) đi qua điểm B(2;1;-3), đồng thời vuông góc với hai mặt phẳng Q : x + y + 3 z = 0 , R : 2 x - y + z = 0 là
A. 4 x + 5 y - 3 z + 22 = 0 .
B. 4 x - 5 y - 3 z - 12 = 0 .
C. 2 x + y - 3 z - 14 = 0 .
D. 4 x + 5 y - 3 z - 22 = 0 .
Trong không gian Oxyz viết phương trình đường thẳng d song song với hai mặt phẳng (P): 3x+12y-3z-5=0, (Q): 3x-4y+9z+7=0 và đồng thời cắt cả hai đường thẳng d 1 : x + 5 2 = y - 3 - 4 = z + 1 3 ,
d 2 : x - 3 - 2 = y + 1 3 = z - 2 4
A. x + 3 8 = y + 1 3 = z - 2 4
B. x - 3 8 = y + 1 3 = z - 2 4
C. x + 3 - 8 = y + 1 3 = z + 2 4
D. x + 3 - 8 = y + 1 3 = z - 2 4
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng ( P ) : x + y + z - 7 = 0 và đường thẳng d : x - 3 - 2 = y + 8 4 = z - 1 . Phương trình mặt phẳng (Q) chứa d đồng thời vuông góc với mặt phẳng (P) là:
A. (Q): 5x+y-6z+7=0
B. (Q): 5x-y-6z+7=0
C. (Q): 5x+y-6z-7=0
D. (Q): 5x-y-6z+-=0
Trong không gian Oxyz, phương trình của mặt phẳng (P) đi qua điểm B 2 ; 1 ; − 3 , đồng thời vuông góc với hai mặt phẳng Q : x + y + 3 z = 0 , R : 2 x − y + z = 0 là:
A. 4 x + 5 y − 3 z + 22 = 0
B. 4 x − 5 y − 3 z − 12 = 0
C. 2 x + y − 3 z − 14 = 0
D. 4 x + 5 y − 3 z − 22 = 0
Trong không gian Oxyz, cho hai đường thẳng d 1 : x - 3 - 1 = y - 3 - 2 = z + 2 1 , d 2 : x - 5 - 3 = y + 1 2 = z - 2 1 và mặt phẳng (P): x +2y +3z -5 =0. Đường thẳng vuông góc với (P), cắt cả d 1 v à d 2 có phương trình là
A. x - 1 3 = y + 1 2 = z 1
B. x - 2 1 = y - 3 2 = z - 1 3
C. x - 1 1 = y + 1 2 = z 3
D. x - 3 1 = y - 3 2 = z + 2 3
Trong không gian với hệ tọa độ Oxyz, cho đường thẳng ∆ nằm trong mặt phẳng α : x+y+z-3=0 đồng thời đi qua điểm M(1;2;0) và cắt đường thẳng d: x - 2 2 = y - 2 1 = z - 3 1 . Một vectơ chỉ phương của ∆ là:
A. u → = (1;1;-2)
B. u → = (1;0;-1)
C. u → = (1;-1;-2)
D. u → = (1;-2;1)