Mặt phẳng (P) vuông góc với giá của vecto a → 1 , - 1 , 2 a là VTPT của mặt phẳng (P).
Ta có phương trình (P):
Chọn C.
Mặt phẳng (P) vuông góc với giá của vecto a → 1 , - 1 , 2 a là VTPT của mặt phẳng (P).
Ta có phương trình (P):
Chọn C.
Trong không gian Oxyz, cho mặt phẳng (P):x+y+z-3=0 và đường thẳng d : x 1 = y + 1 2 = z - 2 - 1 Hình chiếu vuông góc của d trên (P) có phương trình là
A. x + 1 - 1 = y + 1 - 4 = z + 1 5
B. x - 1 3 = y + 1 - 2 = z - 1 - 1
C. x - 1 1 = y - 1 4 = z - 1 - 5
D. x - 1 1 = y - 4 1 = z + 5 1
Trong không gian Oxyz, cho mặt phẳng (P): x+y +z -3 = 0 và đường thẳng d : x 1 = y + 1 2 = z - 2 - 1 . Hình chiếu vuông góc của d trên (P) có phương trình là
A. x + 1 - 1 = y + 1 - 4 = z - 2 - 1
B. x - 1 3 = y - 1 - 2 = z - 1 - 1
C. x - 1 1 = y - 1 4 = z - 1 - 5
D. x - 1 1 = y - 1 1 = z + 5 1
Trong không gian với hệ trục tọa độ Oxyz, cho đường thẳng ∆ : x - 1 2 = y - 1 1 = z - 1 - 1 và mặt phẳng P : x+y+z-3=0. Gọi d là đường thẳng nằm trong (P), đi qua giao điểm của Δ và (P), đồng thời vuông góc với Δ. Giao điểm của đường thẳng d với mặt phẳng tọa độ (Oxy) là
A. M(2;2;0)
B. M(-3;2;0)
C. M(-1;4;0)
D. M(-3;4;0)
Trong không gian Oxyz, cho mặt phẳng ( P ) : x + y + z - 3 = 0 và đường thẳng d : x 1 = y + 1 2 = z - 2 - 1 . Đường thẳng d’ đối xứng với d qua mặt phẳng (P) có phương trình là
A. x - 1 1 = y - 1 - 2 = z - 1 7
B. x - 1 1 = y - 1 2 = z + 1 - 7
C. x - 1 1 = y + 1 - 2 = z + 1 7
D. x + 1 - 1 = y - 1 2 = z - 1 - 7
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng P : x - y - z - 1 = 0 và cho đường thẳng d : x + 1 2 = y - 1 1 = z - 2 3 , cho A 1 ; 1 ; - 2 Đường thẳng đi qua A, song song với (P) và vuông góc với d có phương trình là
A. x - 1 2 = y - 1 5 = z + 2 3
B. x - 1 2 = y - 1 - 5 = z 2
C. x - 1 2 = y - 1 - 5 = z + 2 3
D. x - 1 2 = y - 1 5 = z + 2 - 3
Trong không gian Oxyz cho đường thẳng ( d ) : x - 1 2 = y - 2 - 1 = z - 3 1 và mặt phẳng ( P ) : 2 x + y + z = 0 . Phương trình đường thẳng qua giao điểm của đường thẳng (d) với (P), nằm trên mặt phẳng (P) và vuông góc với đường thẳng d là.
A. x = - 2 - t y = - 2 z = 3 + 2 t
B. x = - 1 + t y = 0 z = 1 - 2 t
C. x = - 2 + t y = - 2 z = 4 - 2 t
D. x = - 3 - t y = 4 z = 1 + 2 t
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng P = x + y + z − 3 = 0 và đường thẳng d : x 1 = y + 1 2 = z − 2 − 1 . Đường thẳng d ' đối xứng với d qua mặt phẳng (P) có phương trình là
A. x + 1 1 = y + 1 2 = z + 1 7
B. x + 1 1 = y + 1 − 2 = z + 1 7
C. x − 1 1 = y − 1 2 = z − 1 7
D. x − 1 1 = y − 1 − 2 = z − 1 7
Trong không gian Oxyz cho 2 đường thẳng
d 1 : x + 3 2 = y + 2 − 1 = z + 2 − 4 , d 2 : x + 1 3 = y + 1 2 = z − 2 3 và mặt phẳng P : x + 2 y + 3 z − 7 = 0. Đường thẳng vuông góc với mặt phẳng (P), cắt d 1 và d 2 có phương trình là
A. x + 7 1 = y 2 = z − 6 3 .
B. x + 5 1 = y + 1 2 = z − 2 3 .
C. x + 4 1 = y + 3 2 = z + 1 3 .
D. x + 3 1 = y + 2 2 = z + 2 3 .
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P): x - y - z - 1 = 0 và cho đường thẳng d : x + 1 2 = y - 1 1 = z - 2 3 , cho A(1; 1; -2). Viết phương trình đường thẳng đi qua A, song song với (P) và vuông góc với d
A. x - 1 2 = y - 1 5 = z + 2 3
B. x - 1 2 = y - 1 - 5 = z 2
C. x - 1 2 = y - 1 - 5 = z + 2 - 3
D. x - 1 2 = y - 1 5 = z + 2 - 3
Trong không gian Oxyz, cho hai đường thẳng d 1 : x - 3 - 1 = y - 3 - 2 = z + 2 1 ; d 2 : x - 5 - 1 = y + 1 2 = z - 2 1 và mặt phẳng (P): x + 2y + 3z - 5 = 0. Đường thẳng vuông góc với (P), cắt d 1 , d 2 có phương trình là
A. x - 1 1 = y + 1 2 = z 3
B. x - 2 1 = y - 3 2 = z - 1 3
C. x - 3 1 = y - 3 2 = z + 2 3
D. x - 1 3 = y + 1 2 = z 1