Trong không gian với hệ trục tọa độ Oxyz, cho điểm A (1;-1;2) và đường thẳng d : x 1 = y 2 = z + 2 - 2 . Mặt cầu (S) tâm A cắt đường thẳng d tại 2 điểm phân biệt B, C sao cho diện tích tam giác ABC bằng 12. Phương trình mặt cầu (S) là:
A. S : x - 1 2 + y + 1 2 + z - 2 2 = 36
B. S : x - 1 2 + y + 1 2 + z - 2 2 = 25
C. S : x - 1 2 + y + 1 2 + z - 2 2 = 144
D. S : x - 1 2 + y + 1 2 + z - 2 2 = 64
Trong không gian Oxyz, cho điểm M và cắt (S) tại hai điểm phân biệt A,B. Diện tích lớn nhất của tam giác OAB bằng
A. 4
B. 2 7
C. 2 2
D. 7
Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d 1 : x − 1 3 = y + 2 − 1 = z + 1 2 ; d 2 : x = 3 t y = 4 − t z = 2 + 2 t và mặt phẳng Oxz cắt d 1 , d 2 lần lượt tại các điểm A, B. Diện tích S của tam giác OAB bằng bao nhiêu?
A. S = 5
B. S = 3
C. S = 6
D. S = 10
Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d 1 : x − 1 3 = y + 2 − 1 = z + 1 2 ; d 2 : x = 3 t y = 4 − t z = 2 + 2 t và mặt phẳng Oxz cắt d 1 , d 2 lần lượt tại các điểm A, B. Diện tích S của tam giác OAB bằng bao nhiêu?
A. S = 5.
B. S = 3.
C. S = 6.
D. S = 10.
Trong không gian Oxyz, cho mặt cầu ( S ) : ( x - 3 ) 2 + ( y - 1 ) 2 + ( z - 1 ) 2 = 4 và hai điểm A(-1;2;-3); B(5;2;3). Gọi M là điểm thay đổi trên mặt cầu (S). Tính giá trị lớn nhất của biểu thức 2 M A 2 + M B 2
A. 5
B. 123
C. 65
D. 112
Trong không gian tọa độ Oxyz, cho mặt cầu S : x 2 + y 2 + z 2 + 4 x - 6 y + m = 0 và đường thẳng ∆ là giao tuyến của hai mặt phẳng α : x + 2 y - 2 z - 4 = 0 và β : 2 x - y - z + 1 = 0 . Đường thẳng ∆ cắt mặt cầu (S) tại hai điểm phân biệt A, B thỏa mãn A B = 8 khi:
A. m = 12
B. m = -12
C. m = -10
D. m = 5
Trong không gian với hệ tọa độ Oxyz, cho mặt cầu ( S ) : x 2 + y 2 + z 2 − 2 x + 4 z + 1 = 0 và đường thẳng ( d ) : x − 2 − 1 = y 1 = z − m 1 . Tìm m để cắt tại hai điểm phân biệt A, B sao cho các tiếp diện của tại A và B vuông góc với nhau.
A. m = 1 hoặc m = 4
B. m = –1 hoặc m = –4.
C. m = 0 hoặc m = –1.
D. m = 0 hoặc m = –4.
Trong không gian Oxyz cho điểm M (2;1;1), mặt phẳng α : x + y + z - 4 = 0 và mặt cầu ( s ) : ( x - 3 ) 2 + ( y - 3 ) 2 + ( z - 4 ) 2 = 16 . Phương trình đường thẳng α đi qua M và nằm trong α cắt mặt cầu (S) theo một đoạn thẳng có độ dài nhỏ nhất. Đường thẳng α đi qua điểm nào trong các điểm sau đây?
A. (4; -3; 3)
B. (4; -3; -3)
C. (4; 3; 3)
D. (-4; -3; -3)
Trong không gian Oxyz cho mặt cầu (S): ( x - 1 ) 2 + ( y + 2 ) 2 + ( z - 3 ) 2 = 27 . Gọi ( α ) là mặt phẳng đi qua hai điểm A(0;0;-4), B(2;0;0) và cắt (S) theo giao tuyến là đường tròn (C) sao cho khối nón có đỉnh là tâm của (S), đáy là (C) có thể tích lớn nhất. Biết mặt phẳng ( α ) có phương trình dạng ax+by-z+c= 0, khi đó a-b+c bằng:
A. -4.
B. 8
C. 0
D. 2