Trong không gian Oxyz, cho ba điểm A(3;0;0),B(0;4;0),C(0;0;c) với c là số thực thay đổi khác 0. Khi c thay đổi thì trực tâm H của tam giác ABC luôn thuộc một đường tròn cố định. Bán kính của đường tròn đó bằng
A. 5 2
B. 5 4
C. 12 5
D. 6 5
Trong không gian với hệ toạ độ Oxyz, cho hai điểm A(2;-1;-1),B(4;-5;-5) và mặt phẳng (P):x+y+z-3=0. Mặt cầu (S) thay đổi qua hai điểm A,B và cắt mặt phẳng (P) theo giao tuyến là đường tròn (C) có tâm H và bán kính bằng 3. Biết rằng H luôn thuộc một đường tròn cố định. Tìm bán kính của đường tròn đó.
A. 21 .
B. 2 6 .
C. 6.
D. 3 3 .
Trong không gian với hệ tọa độ Oxyz, cho 2 điểm A 0 ; 2 ; 4 , B 1 ; 2 ; − 3 và mặt phẳng P : x + y + z = 0 . Xét đường thẳng d thay đổi thuộc (P) và đi qua B, gọi H là hình chiếu vuông góc của A trên d. Biết rằng khi d thay đổi thì H thuộc một đường tròn cố định. Bán kính R của đường tròn đó là:
A. R = 38 2 .
B. R = 3 2 .
C. R = 1 2 .
D. R = 3 3 2 .
Trong không gian Oxyz, cho các điểm A 0 ; 4 2 ; 0 , B 0 , 0 , 4 2 điểm C ∈ m p O x y và tam giác OAC vuông tại C; hình chiếu vuông góc của O trên BC là điểm H. Khi đó điểm H luôn thuộc đường tròn cố định có bán kính bằng:
A. 2 2
B. 4
C. 3
D. 2
Trong không gian với hệ toạ độ Oxyz, cho ba điểm A,B,C lần lượt di động trên ba trục toạ độ Ox,Oy,Oz (không trùng với gốc toạ độ O) sao cho 1 O A 2 + 1 O B 2 + 1 O C 2 = 1 4 . Biết mặt phẳng (ABC) luôn tiếp xúc với một mặt cầu cố định. Tính bán kính của mặt cầu đó.
A. 4.
B. 3.
C. 1.
D. 2.
Trong không gian Oxyz, cho mặt cầu S : x - 2 2 + y - 4 2 + z - 6 2 = 24 và điểm A(-2;0;-2). Từ A kẻ các tiếp tuyến đến (S) với các tiếp điểm thuộc đường tròn (ω). Từ điểm M di động nằm ngoài (S) và nằm trong mặt phẳng chứa (ω) kẻ các tiếp tuyến đến (S) với các tiếp điểm thuộc đường tròn (ω'). Biết rằng khi hai đường tròn (ω), (ω') có cùng bán kính thì M luôn thuộc một đường tròn cố định. Tìm bán kính r của đường tròn đó.
A. 6 2
B. 3 10
C. 3 5
D. 3 2
Trong không gian với hệ tọa độ Oxyz, cho điểm H(1;2;-2). Gọi (P) là mặt phẳng đi qua H và cắt các trục Ox, Oy, Oz tại các điểm A, B, C sao cho H là trực tâm của tam giác ABC. Viết phương trình mặt cầu tâm O và tiếp xúc với mặt phẳng (P)?
A. x 2 + y 2 + z 2 = 81
B. x 2 + y 2 + z 2 = 3
C. x 2 + y 2 + z 2 = 9
D. x 2 + y 2 + z 2 = 25
Trong không gian với hệ toạ độ Oxyz, cho điểm H 1 ; 2 ; − 2 . Gọi (P) là mặt phẳng đi qua H và cắt các trục Ox, Oy, Oz tại các điểm A, B, C sao cho H là trực tâm của tam giác ABC. Viết phương trình mặt cầu tâm O và tiếp xúc với mặt phẳng (P)?
A. x 2 + y 2 + z 2 = 81
B. x 2 + y 2 + z 2 = 3
C. x 2 + y 2 + z 2 = 9
D. x 2 + y 2 + z 2 = 25
Trong không gian Oxyz, cho các điểm A, B, C (không trùng O) lần lượt thay đổi trên các trục Ox, Oy, Oz và luôn thỏa mãn điều kiện : tỉ số giữa diện tích của tam giác ABC và thể tích khối OABC bằng 3 2 Biết rằng mặt phẳng (ABC) luôn tiếp xúc với một mặt cầu cố định, bán kính của mặt cầu đó bằng :
A. 3
B. 2
C. 4
D. 1