Trong không gian Oxyz, cho đường thẳng Δ là giao tuyến của hai mặt phẳng (P):x+my-mz+1 = 0; (Q):mx+y+z+m=0. Đường thẳng Δ ′ qua gốc toạ độ O và song song với đường thẳng Δ . Ba điểm A,B,C lần lượt di động trên Oz, Δ , Δ ′. Giá trị nhỏ nhất của AB+BC+CA bằng
A. 1.
B. 2 2
C. 2.
D. 2
Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng P : x - y + z + 3 = 0 , Q : x + 2 y - 2 z - 5 = 0 và mặt cầu S : x 2 + y 2 + z 2 - 2 z + 4 y - 6 z - 11 = 0 . Gọi M là điểm di động trên (P) sao cho MN luôn vuông góc với (Q). Giá trị lớn nhất của độ dài đoạn thẳng MN bằng
A. 9 + 5 3
B. 28
C. 14
D. 3 + 5 3
Trong không gian Oxyz, cho đường thẳng d: x - 3 2 = y + 2 1 = z + 1 - 1 và mặt phẳng có phương trình (P): x+y+z+2=0. Đường thẳng Δ nằm trong mặt phẳng (P), vuông góc với đường thẳng d đồng thời khoảng cách từ giao điểm I của d với (P) đến Δ bằng 42 . Gọi M(5;b;c) là hình chiếu vuông góc của I trên Δ . Giá trị của bc bằng:
A. -10.
B. 10
C. 12
D. -20
Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P): 2x-y+z-10=0 và đường thẳng d: x + 2 2 = y - 1 1 = z - 1 - 1 . Đường thẳng Δ cắt (P) và d lần lượt tại M và N sao cho A(1;3;2) là trung điểm MN. Tính độ dài đoạn MN
A. MN=4 33
B. MN=2 26 , 5
C. MN=4 16 , 5
D. MN=2 33
Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : x + 1 2 = y 1 = z − 2 1 , mặt phẳng P : x + y − 2 z + 5 = 0 và điểm A 1 ; − 1 ; 2 . Viết phương trình đường thẳng Δ cắt d và P lần lượt tại M và N sao cho A là trung điểm của đoạn thẳng MN
A. Δ : x − 3 2 = y − 2 3 = z − 4 2
B. Δ : x − 1 6 = y + 1 1 = z − 2 2
C. Δ : x + 5 6 = y + 2 1 = z 2
D. Δ : x + 1 2 = y + 4 3 = z − 3 2
Trong không gian với hệ toạ độ Oxyz, cho hai điểm A 1 ; 2 ; 3 , B 3 ; 4 ; 5 và mặt phẳng ( α ) : x + 2 y + 3 z - 14 = 0 Gọi Δ là đường thẳng thay đổi nằm trong mặt phẳng (α), các điểm M,N lần lượt là hình chiếu vuông góc của A,B trên Δ. Biết rằng khi AM = BN thì trung điểm của MN luôn thuộc một đường thẳng cố định. Viết phương trình đường thẳng cố định đó.
A. x = 4 + t y = 5 - 2 t z = 1 + t
B. x = 5 + t y = 3 - 2 t z = 1 + t
C. x = 2 + t y = 1 - 2 t z = 3 + t
D. x = 4 + t y = 5 + 2 t z = t
Trong không gian với hệ toạ độ Oxyz, cho hai điểm A(1;2;3), B(3;4;5) và mặt phẳng ( α ) :x+2y+3z-14=0. Gọi Δ là đường thẳng thay đổi nằm trong mặt phẳng ( α ) , các điểm M,N lần lượt là hình chiếu vuông góc của A,B trên Δ . Biết rằng khi AM = BN thì trung điểm của MN luôn thuộc một đường thẳng cố định. Viết phương trình đường thẳng cố định đó.
A. x = 4 + t y = 5 - 2 t z = 1 + t
B. x = 5 + t y = 3 - 2 t z = 1 + t
C. x = 2 + t y = 1 - 2 t z = 3 + t
D. x = 4 + t y = 5 + 2 t z = t
Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : x + 1 2 = y 1 = z - 2 1 và mặt phẳng (P) có phương trình x + y - 2z +5 = 0 và A(1;-1;2). Đường thẳng D cắt d và (P) lần lượt tại M và N sao cho A là trung điểm đoạn thẳng MN. Một vectơ chỉ phương của D là:
A. a → = 2 ; 3 ; 2
B. a → = 1 ; - 1 ; 2
C. a → = - 3 ; 5 ; 1
D. a → = 4 ; 5 ; - 13
Trong không gian với hệ tọa độ Oxyz , cho đường thẳng d : x + 1 2 = y 1 = z - 2 1 , mặt phẳng P : x + y - 2 z + 5 = 0 và A ( 1 ; - 1 ; 2 ) . Đường thẳng ∆ cắt d và (P) lần lượt tại M và N sao cho A là trung điểm của đoạn thẳng MN . Một vectơ chỉ phương của ∆ là:
A. u Δ → 2 ; 3 ; 2
B. u Δ → 1 ; - 1 ; 2
C. u Δ → - 3 ; 5 ; 1
D. u Δ → 4 ; 5 ; - 13