Trong không gian Oxyz, cho các điểm A(1; –1;1); B(–1;2;3) và đường thẳng d: x + 1 - 2 = y - 2 1 = z - 3 3 . Đường thẳng ∆ đi qua điểm A, vuông góc với hai đường thẳng AB và d có phương trình là:
A. x - 1 2 = y + 1 4 = z - 1 7
B. x - 1 7 = y - 1 2 = z - 1 4
C. x - 1 2 = y + 1 7 = z - 1 4
D. x - 1 7 = y + 1 2 = z - 1 4
Trong không gian với hệ tọa độ Oxyz, cho điểm A(1;-1;3) và hai đường thẳng, d 1 : x - 4 1 = y + 2 4 = z - 1 - 2 , d 2 = x - 2 1 = y + 1 - 1 = z - 1 1 . Viết phương trình đường thẳng d đi qua A, vuông góc với đường thẳng d 1 và cắt đường thẳng d 2 .
A. d : x - 4 4 = y + 1 1 = z - 3 4
B. d : x - 1 2 = y + 1 1 = z - 3 3
C. d : x - 1 2 = y + 1 - 1 = z - 3 - 1
D. d : x - 1 - 2 = y + 1 2 = z - 3 3
Trong không gian Oxyz, cho điểm A(1; 2; -1), đường thẳng d có phương trình x - 3 1 = y - 3 3 = z 2
và mặt phẳng (a) có phương trình x + y - z + 3 = 0 . Đường thẳng D đi qua điểm A , cắt d và song song với mặt phẳng (a) có phương trình là
A. x - 1 1 = y - 2 - 2 = z + 1 - 1
B. x - 1 1 = y - 2 2 = z + 1 1
C. x - 1 1 = y - 2 2 = z - 1 1
D. x - 1 - 1 = y - 2 - 2 = z + 1 1
Trong không gian Oxyz cho đường thẳng d: x 2 = y 2 = z + 3 - 1 và mặt cầu (S): ( x - 3 ) 2 + ( y - 2 ) 2 + ( z - 5 ) 2 = 36 . Gọi Δ là đường thẳng đi qua A(2;1;3) vuông góc với đường thẳng (d) và cắt (S) tại 2 điểm có khoảng cách lớn nhất. Khi đó đường thẳng Δ có một vectơ chỉ phương là u → ( 1 ; a ; b ) . Tính a + b
A. 4
B. -2
C. - 1 2
D. 5
Trong không gian với hệ tọa độ Oxyz, cho điểm A ( 1 ; 2 ; 3 ) và cho đường thẳng d có phương trình x − 2 2 = y + 2 − 1 = z − 3 1 . Tìm tọa độ hình chiếu vuông góc H của A trên d.
A. H(0;1;2)
B. H(0;-1;2)
C. H(1;1;1)
D. H(-3;1;4)
Trong không gian với hệ tọa độ Oxyz, cho điểm A(1;2;3) và cho đường thẳng d có phương trình x - 2 2 = y + 2 - 1 = z - 3 1 . Tìm tọa độ của điểm B thuộc trục hoành sao cho AB vuông góc với d
A. B ( - 3 2 ; 0 ; 0 )
B. B ( 1 ; 0 ; 0 )
C. B ( 3 2 ; 0 ; 0 )
D. B ( 1 ; 0 ; 0 )
Trong không gian với hệ toạ độ Oxyz, cho đường thẳng ∆ là giao tuyến của hai mặt phẳng P : z - 1 = 0 và Q : x + y + z - 3 = 0 . Gọi d là đường thẳng nằm trong mặt phẳng P , cắt đường thẳng x - 1 1 = y - 2 - 1 = z - 3 - 1 và vuông góc với đường thẳng . Phương trình của đường thẳng d là
A. x = 3 + t y = t z = 1 + t
B. x = 3 - t y = t z = 1
C. x = 3 + t y = t z = 1
D. x = 3 + t y = - t z = 1 + t
Trong không gian Oxyz, cho điểm A(4;2;-3) và hai đường thẳng d 1 : x 4 = y 6 = z − 1 , d 2 : x = − 1 + 2 t y = 2 + 3 t z = 4 − t . Đường thẳng d đi qua điểm A, đồng thời vuông góc với hai đường thẳng d 1 , d 2 có phương trình là:
A. x = 3 + 4 t y = − 2 + 2 t z = − 3 − 3 t
B. x = 4 + 2 t y = 2 + 3 t z = − 3 − t
C. x = 4 + 3 t y = 2 + 2 t z = − 3
D. x = 4 + 3 t y = 2 − 2 t z = − 3
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P): x - y - z - 1 = 0 và cho đường thẳng d : x + 1 2 = y - 1 1 = z - 2 3 , cho A(1; 1; -2). Viết phương trình đường thẳng đi qua A, song song với (P) và vuông góc với d
A. x - 1 2 = y - 1 5 = z + 2 3
B. x - 1 2 = y - 1 - 5 = z 2
C. x - 1 2 = y - 1 - 5 = z + 2 - 3
D. x - 1 2 = y - 1 5 = z + 2 - 3