Sử dụng phương trình theo đoạn chắn của
mặt phẳng và áp dụng BĐT Bunhiacopski.
Chọn A.
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Sử dụng phương trình theo đoạn chắn của
mặt phẳng và áp dụng BĐT Bunhiacopski.
Chọn A.
Trong không gian với hệ trục tọa độ Oxyz, cho điểm G 1 ; 2 ; 3 . Mặt phẳng α đi qua G cắt Ox,Oy,Oz lần lượt tại A, B, C sao cho G là trọng tâm của tam giác ABC. Viết phương trình mặt phẳng α .
A. α : x 3 + y 6 + z 9 = 1
B. α : x 2 + y 4 + z 6 = 1
C. α : x 3 + y 2 + z 1 = 1
D. α : x 1 + y 2 + z 3 = 1
Trong không gian với hệ trục tọa độ Oxyz, cho điểm G(1;2;3). Mặt phẳng đi qua G cắt Ox, Oy, Oz lần lượt tại A, B, C sao cho G là trọng tâm của tam giác ABC. Viết phương trình mặt phẳng α
A. α : x 2 + y 4 + z 6 = 1
B. α : x 3 + y 2 + z 1 = 1
C. α : x 1 + y 2 + z 3 = 1
D. α : x 3 + y 6 + z 9 = 1
Trong không gian với hệ tọa độ Oxyz, cho điểm M(1;1;2) Hỏi có bao nhiêu mặt phẳng (P) đi qua M và cắt các trục x Ox, y Oy, z Oz lần lượt tại các điểm A, B, C sao cho O A = O B = O C ≠ 0 ?
A. 3
B. 1
C. 4
D. 8
Trong không gian tọa độ Oxyz, cho đường thẳng x - 1 1 = y - 2 - 2 = z + 1 - 1 và mặt phẳng (P):2x - y - 2z - 2018 = 0. Phương trình mặt phẳng (Q) chứa đường thẳng D và tạo với (P) một góc nhỏ nhất cắt các trục tọa độ lần lượt tại các điểm A, B, C. Thể tích tứ diện O.ABC là:
A. 1 6
B. 32 3
C. 32 6
D. 64 3
Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng ( α ) : bc . x + ac . y + ab . z - abc = 0 với a, b, c là các số khác 0 thỏa mãn 1 a + 2 b + 3 c = 7 . Gọi A, B, C lần lượt là giao điểm của α với các trục tọa độ Ox, Oy, Oz. Biết mặt phẳng α tiếp xúc với mặt cầu (S): ( x - 1 ) 2 + ( y - 2 ) 2 + ( z - 3 ) 2 = 72 7 . Thể tích khối OABC với O là gốc tọa độ bằng
A. 2 9
B. 3 4
C. 1 8
D. 4 3
Trong không gian Oxyz cho điểm M 1 ; 2 ; 3 . Viết phương trình mặt phẳng (P) đi qua M cắt các trục tọa độ Ox, Oy, Oz lần lượt tại A, B, C sao cho M là trọng tâm của tam giác ABC.
A. P : 6 x + 3 y + 2 z + 18 = 0
B. P : 6 x + 3 y + 2 z + 6 = 0
C. P : 6 x + 3 y + 2 z - 18 = 0
D. P : 6 x + 3 y + 2 z - 6 = 0
Trong không gian Oxyz cho điểm M 1 ; 2 ; 3 . Viết phương trình mặt phẳng P đi qua M cắt các trục tọa độ Ox, Oy, Oz lần lượt tại A, B, C sao cho M là trọng tâm của tam giác ABC.
A. P : 6 x + 3 y + 2 z + 18 = 0
B. P : 6 x + 3 y + 2 z + 6 = 0
C. P : 6 x + 3 y + 2 z - 18 = 0
D. P : 6 x + 3 y + 2 z - 6 = 0
Trong không gian Oxyz, cho điểm H(2;1;1). Viết phương trình mặt phẳng qua H và cắt các trục Ox , Oy , Oz lần lượt tại A, B , C sao cho H là trực tâm tam giác ABC
A. x – y – z = 0
B. 2x + y + z – 6 = 0.
C. 2x + y + z + 6 = 0.
D. x 2 + y 1 + z 1 = 1
Trong không gian với hệ tọa độ Oxyz, mặt phẳng (P) qua hai điểm M(1;8;0)⸦C(0;0;3) cắt các nửa trụ dương Ox,Oy lần lượt tại A, B sao cho OG nhỏ nhất (G là trọng tâm tam giác ABC). Biết G(a;b;c) tính P=a+b+c
A. 12
B. 6
C. 7
D. 3