Trong không gian Oxyz, cho ba điểm A(1;−1;1),B(1;3;1),C(4;−1;−2). Tâm đường tròn ngoại tiếp tam giác ABC có tọa độ là
A. O − 1 2 ; 0 ; 3
B. O − 1 ; 2 ; 0
C. O − 1 ; 2 ; 0
D. O 5 2 ; 1 ; − 1 2
Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : x - 1 - 2 = y - 1 = z - 2 1 và hai điểm A(-1;3;1),B(0;2;-1). Tìm tọa độ điểm C thuộc d sao cho diện tích của tam giác ABC nhỏ nhất.
A . C ( - 1 ; 0 ; 2 )
B . C ( 1 ; 1 ; 1 )
C . C ( - 3 ; - 1 ; 3 )
D . C ( - 5 ; - 2 ; 4 )
Trong không gian với hệ tọa độ Oxyz, cho ba điểm A - 1 ; 0 ; 1 , B 1 ; 2 ; - 1 , C - 1 ; 2 ; 3 và I là tâm đường tròn ngoại tiếp tam giác ABC. Tính bán kính R mặt cầu (S) có tâm I và tiếp xúc với mặt phẳng (Oxz).
A. R = 4
B. R = 3
C. R = 5
D. R = 2
Trong không gian với hệ trục tọa độ Oxyz, cho điểm A(1;-3;2), B(0;1;-2) và G(2;-1;1). Tọa độ điểm C sao cho tam giác ABC nhận G là trọng tâm là
A. C 1 ; - 1 ; 2 3
B. C(3;-3;2)
C. C(5;-1;2)
D. C(1;1;0)
Trong không gian với hệ tọa độ Oxyz, cho ba điểm A(1;2;3), B(3;4;4), C(2;6;6) và I(a;b;c) là tâm đường tròn ngoại tiếp tam giác ABC. Tính S = a+b+c
A. 63 5
B. 46 5
C. 31 3
D. 10
Trong không gian với hệ tọa độ Oxyz, cho điểm H(1;2;-2). Gọi (P) là mặt phẳng đi qua H và cắt các trục Ox, Oy, Oz tại các điểm A, B, C sao cho H là trực tâm của tam giác ABC. Viết phương trình mặt cầu tâm O và tiếp xúc với mặt phẳng (P)?
A. x 2 + y 2 + z 2 = 81
B. x 2 + y 2 + z 2 = 3
C. x 2 + y 2 + z 2 = 9
D. x 2 + y 2 + z 2 = 25
Trong không gian Oxyz, cho mặt phẳng α : 2 x + 3 y - 2 z + 12 = 0 . Gọi A, B, C lần lượt là giao điểm của α với 3 trục tọa độ, đường thẳng d đi qua tâm đường tròn ngoại tiếp tam giác ABC và vuông góc với α có phương trình là
A. x + 3 2 = y + 2 3 = z - 3 - 2
B. x + 3 2 = y - 2 - 3 = z - 3 2
C. x + 3 2 = y - 2 3 = z - 3 - 2
D. x - 3 2 = y - 2 3 = z + 3 - 2
Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(0;2;-2) và B(2;2;-4). Giả sử I(a;b;c) là tâm đường tròn ngoại tiếp tam giác OAB. Tính a 2 + b 2 + c 2
A. 8
B. 2
C. 6
D. 14
Trong không gian với hệ trục tọa độ Oxyz, cho điểm A (1;-1;2) và đường thẳng d : x 1 = y 2 = z + 2 - 2 . Mặt cầu (S) tâm A cắt đường thẳng d tại 2 điểm phân biệt B, C sao cho diện tích tam giác ABC bằng 12. Phương trình mặt cầu (S) là:
A. S : x - 1 2 + y + 1 2 + z - 2 2 = 36
B. S : x - 1 2 + y + 1 2 + z - 2 2 = 25
C. S : x - 1 2 + y + 1 2 + z - 2 2 = 144
D. S : x - 1 2 + y + 1 2 + z - 2 2 = 64