Trong không gian hệ tọa độ Oxyz, cho ba điểm A(0;1;1), B(3;0;-1), C(0;21;-19) và mặt cầu ( S ) : ( x - 1 ) 2 + ( y - 1 ) 2 + ( z - 1 ) 2 = 1 Điểm M(a;b;c) thuộc mặt cầu (S) sao cho biểu thức T = 3 M A 2 + 2 M B 2 + M C 2 đạt giá trị nhỏ nhật. Tính tổng a + b + c (THPT Hậu Lộc, Thanh Hóa).
A. 0
B. 12
C. 12/5
D. 14/5
Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S): ( x - 1 ) 2 + ( y - 2 ) 2 + ( z - 2 ) 2 = 9 và mặt phẳng (P): 2x - 2y + z + 3 = 0. Gọi M(a;b;c) là điểm trên mặt cầu (S) sao cho khoảng cách từ M đến mặt phẳng (P) là lớn nhất. Khi đó:
A. a + b + c = 8.
B. a + b + c = 5.
C. a + b + c = 6.
D. a + b + c = 7.
Trong không gian Oxyz, cho mặt cầu ( S ) : ( x + 1 ) 2 + ( y + 1 ) 2 ( z + 1 ) 2 = 9 và điểm A(2;3;-1). Xét các điểm M thuộc (S) sao cho đường thẳng AM tiếp xúc với (S), M luôn thuộc mặt phẳng có phương trình:
A. 6x+8y+11=0
B. 3x+4y+2=0
C. 3x+4y-2=0
D. 6x+8y-11=0
Trong không gian Oxyz, cho mặt cầu ( S 1 ) : ( x - 1 ) 2 + ( y - 1 ) 2 + ( z - 2 ) 2 = 16 và mặt cầu ( S 2 ) : ( x + 1 ) 2 + ( y - 2 ) 2 + ( z + 1 ) 2 = 9 cắt nhau theo giao tuyến là đường tròn có tâm I ( a ; b ; c ) . Tính a + b + c
A . 7 4
B . - 1 4
C . 10 3
D . 1
Trong không gian Oxyz, cho mặt cầu ( S ) : ( x - 3 ) 2 + ( y - 1 ) 2 + ( z - 1 ) 2 = 4 và hai điểm A(-1;2;-3); B(5;2;3). Gọi M là điểm thay đổi trên mặt cầu (S). Tính giá trị lớn nhất của biểu thức 2 M A 2 + M B 2
A. 5
B. 123
C. 65
D. 112
Trong không gian với hệ trục tọa độ Oxyz, cho mặt cầu ( S ) : x 2 + y 2 + z 2 - 2 x - 2 y - 2 z - 1 = 0 và mặt phẳng ( P ) : x + y + 2 z + 2 = 0 . Giả sử điểm M thuộc (P) và điểm N thuộc (S) sao cho M N → cùng phương với vectơ . Độ dài nhỏ nhất của đoạn MN là:
A. 2 6 + 4
B. 2 6 + 2
C. 2 6 - 4
D. 6 + 2
Cho a,b,c∈R sao cho hàm số y=x 3 + ax 2 + bx + c đạt cực trị tại x = 2 đồng thời có y(0)=1 và y(2)=-3. Hỏi trong không gian Oxyz, điểm M(a;b;c) nằm trong mặt cầu nào sau đây?
A. ( x - 1 ) 2 + ( y - 1 ) 2 + ( z - 1 ) 2 = 16 .
B. ( x - 2 ) 2 + ( y - 3 ) 2 + ( z + 5 ) 2 = 64 .
C. x 2 + y 2 + ( z + 5 ) 2 = 36 .
D. ( x - 1 ) 2 + ( y - 2 ) 2 + ( z - 3 ) 2 = 25 .
Trong không gian với hệ trục tọa độ Oxyz cho A (1; 2; ‒1), B (‒2; 1; 0). Điểm M a ; b ; c thuộc mặt phẳng P : x - 2 y + z + 4 = 0 sao cho M A = M B = 11 2 . Khi đó giá trị của a bằng?
A. a = ± 1 2
B. a = 11 4
C. a = 1 2
D. a = - 1 2
Trong không gian Oxyz cho mặt cầu (S): ( x - 1 ) 2 + ( y + 2 ) 2 + ( z - 3 ) 2 = 27 . Gọi ( α ) là mặt phẳng đi qua hai điểm A(0;0;-4), B(2;0;0) và cắt (S) theo giao tuyến là đường tròn (C) sao cho khối nón có đỉnh là tâm của (S), đáy là (C) có thể tích lớn nhất. Biết mặt phẳng ( α ) có phương trình dạng ax+by-z+c= 0, khi đó a-b+c bằng:
A. -4.
B. 8
C. 0
D. 2