Trong không gian, cho hình thang cân ABCD có AB//CD, AB = a, CD = 2a, AD = a. Gọi M, N lần lượt là trung điểm của AB, CD. Gọi K là khối tròn xoay được tạo ra khi quay hình thang ABCD quanh trục MN. Tính diệc tích xung quanh S x q của khối K
A. S x q = πa 2 2
B. S x q = 3 πa 2 2
C. S x q = 3 πa 2
D. S x q = πa 2
Trong không gian, cho hình thang cân ABCD có AB//CD, A B = a , C D = 2 a , A D = a . Gọi M, N lần lượt là trung điểm của AB. CD. Gọi K là khối tròn xoay được tạo ra khi quay hình thành ABCD quanh trục MN. Tính diện tích toàn phần S φ của khối K.
A. S φ = 9 π a 2 4
B. S φ = 17 π a 2 4
C. S φ = 7 π a 2 4
D. S φ = 11 π a 2 4
Trong không gian cho ABCD là hình chữ nhật, AB=2, AD=1. Đường thẳng d nằm trong mặt phẳng (ABCD) không có điểm chung với hình chữ nhật ABCD, song song với cạnh AB và cách AB một khoảng bằng a. Gọi V là thể tích của khối tròn xoay T, nhận được khi quay hình chữ nhật ABCD xung quanh trục d. Cho biết d ( A B , d ) < d ( C D , d ) . Tính a biết rằng thể tích khối T gấp 3 lần thể tích của khối cầu có đường kính AB.
A. a = 3
B. a = - 1 + 2
C. a = 1 2
D. a = 15 2
Cho hình thang cân ABCD có các cạnh AB=2a, CD=4a và cạnh bên AD=BC=3a. Tính theo a thể tích V của khối tròn xoay thu được khi quay hình thang cân ABCD xung quanh trục đối xứng của nó.
A. V = 4 3 π a 3
B. V = 4 + 10 2 3 π a 3
C. V = 10 2 3 π a 3
D. V = 14 2 3 π a 3
Cho hình thang cân ABCD có các cạnh đáy AB = 2a, CD = 4a và cạnh bên AD = BC = 3a. Tính theo a thể tích V của khối tròn xoay thu được khi quay hình thang cân ABCD quanh trục đối xứng của nó.
A. V = 4 3 πa 3
B. V = 4 + 10 2 3 πa 3
C. V = 10 2 3 πa 3
D. V = 14 2 3 πa 3
Cho hình phẳng D giới hạn bởi đường cong y = 3 + x − 2 e x x e x + 1 , trục hoành và hai đường thẳng x=0, x=1. Khối tròn xoay tạo thành khi quay D quanh trục hoành có thể tích V = π a + b ln 1 + 1 e , trong đó a, b là các số hữu tỷ. Mệnh đề nào dưới đây là đúng?
A. a+b=5
B. a-2b=5
C. a+b=3
D. a-2b=7
Cho hình chữ nhật ABCD và nửa đường tròn đường kính AB như hình vẽ. Gọi M, N lần lượt là trung điểm của AB, CD. Biết A B = 4 , A D = 7 . Tính thể tích V của vật thể tròn xoay khi quay mô hình trên quanh trục MN.
A. 104 3 π
B. 116 3 π
C. 44 3 π
D. 1000 3 π
Cho hình chữ nhật ABCD và nửa đường tròn đường kính AB như hình vẽ. Gọi M,N lần lượt là trung điểm của AB,CD. Biết AB = 4 , AD = 7 . Tính thể tích V của vật thể tròn xoay khi quay mô hình trên quanh trục MN.
A. 44 3 π
B. 24 3 π
C. 100 3 π
D. 116 3 π
Hình chữ nhật ABCD có A B = 4 , A D = 2 . Gọi M và N lần lượt là trung điểm của AB và CD. Cho hình chữ nhật quay quanh MN ta được một khối tròn xoay có thể tích V bằng
A. V = 4 π 3
B. V = 8 π
C. V = 8 π 3
D. V = 32 π