Trên hệ trục tọa độ Oxy cho 🔺️ABC có A(2;-1),B(5;-5),C(-2;-4)
a) Chứng minh 🔺️ABC vuông tại A, tính diện tích 🔺️ABC?
b) Tính tọa độ vecto u= vectoAB - 2 vectoBC.
c) Tìm tọa độ điểm D sao cho tứ giác ABCD là hình bình hành?
d) Tìm tọa độ điểm H biết H là chân đường vuông góc kẻ từ A đến BC?
Giúp mk vớicaj mk đang cần gấp.
c. Gọi D(xD;yD)
\(\overrightarrow{AB}=\left(3;-4\right)\)
\(\overrightarrow{DC}=\left(-2-X_D;-4-Y_D\right)\)
Ta có \(\overrightarrow{AB}=\overrightarrow{DC}\)
\(-2-X_D=3\)
-4 - Yd = -4
=>x=7/2;y=-10
a: \(\overrightarrow{AB}=\left(3;-4\right)\)
\(\overrightarrow{AC}=\left(-4;-3\right)\)
Vì \(\overrightarrow{AB}\cdot\overrightarrow{AC}=0\)
nên ΔABC vuông tại A
\(AB=\sqrt{3^2+\left(-4\right)^2}=5\)
\(AC=\sqrt{\left(-4\right)^2+\left(-3\right)^2}=5\)
\(S_{ABC}=\dfrac{1}{2}\cdot5\cdot5=12.5\)
b: \(\overrightarrow{AB}=\left(3;-4\right);\overrightarrow{BC}=\left(-7;1\right)\)
\(\overrightarrow{u}=\overrightarrow{AB}-2\overrightarrow{BC}=\left(17;-6\right)\)
d: \(\overrightarrow{AH}=\left(x-2;y+1\right)\)
\(\overrightarrow{BH}=\left(x-5;y+5\right)\)
Theo đề, ta có: \(\left\{{}\begin{matrix}\dfrac{x-5}{-7}=\dfrac{y+5}{1}\\\left(x-2\right)\cdot\left(-7\right)+\left(y+1\right)\cdot1=0\end{matrix}\right.\)
=>-7x+14+y+1=0 và x-5=-7y-35
=>-7x+y+15=0 và x+7y=-30
=>x=3/2; y=-9/2