Tổng tất cả các giá trị của a để hàm số f ( x ) = a 2 ( x - 2 ) x + 2 - 2 k h i x < 2 ( 1 - a ) x k h i x ≥ 2 liên tục trên R là
A. 1
B. 2
C. -1/2
D. -1
Cho hàm số f ( x ) = x 3 – ( 2 m - 1 ) x 2 + ( 2 - m ) x + 2 . Tìm tất cả các giá trị thực của tham số m để hàm số y=f(|x|) có 5 cực trị
A. - 10 < m < 5 4
B. - 2 < m < 5
C. - 2 < m < 5 4
D. 5 4 < m < 2
Cho hàm số y = f ( x ) = x 3 - ( 2 m - 1 ) x 2 + ( 2 - m ) x + 2 . Tất cả các giá trị của tham số m để hàm số y=f(|x|) có 5 điểm cực trị
A. 5 4 < m ≤ 2
B. - 2 < m < 5 4
C. - 5 4 < m < 2
D. 5 4 < m < 2
Cho hàm số f(x) có đạo hàm liên tục trên R và thỏa mãn f(x)>0,∀x∈R. Biết f(0)=1 và (2-x)f(x)-f' (x)=0. Tìm tất cả các giá trị thực của tham số m để phương trình f(x)=m có hai nghiệm phân biệt.
A. m< e 2 .
B. 0<m< e 2 .
C. 0<m≤ e 2 .
D. m > e 2
Cho hàm số y = f(x) có bảng biến thiên như sau
Tìm tất cả các giá trị của tham số m để phương trình f(x) = 2m có nhiều nhất 2 nghiệm.
A. m ∈ − ∞ ; − 1 2 ∪ 0 ; + ∞
B. m ∈ 0 ; + ∞ ∪ − 1
C. m ∈ − ∞ ; − 1 ∪ 0 ; + ∞
D. m ∈ 0 ; + ∞ ∪ − 1 2
Cho hàm số đa thức bậc ba y=f(x) có đồ thị của các hàm số y=f(x), y=f '(x)như hình vẽ bên.Gọi S là tập hợp tất cả các giá trị nguyên của m để phương trình f(f(x)-m)+2f(x)=3(x+m) có đúng 3 nghiệm thực .Tổng các phần tử của S bằng
A. 0
B. -6
C. -7
D. -5
Cho hàm số y=f(x) có đồ thị như hình bên. Tìm tất cả các giá trị thực của tham số m để phương trình f(x)=m+2 có bốn nghiệm phân biệt
A. -4<m<-3
B. -4≤m≤-3
C. -6≤m≤-5
D. -6<m<-5
Cho hàm số y=f(x) có bảng biến thiên như sau
Tập hợp tất cả các giá trị của tham số m để phương trình f(x)+m=0 có 2 nghiệm phân biệt là
A. (-2;1)
B. [-1;2)
C. (-1;2)
D. (-2;1]
Cho hàm số y = f(x) = a x + b c x + d có đồ thị như hình vẽ bên. Tất cả các giá trị của m để phương trình |f(x)| = m có 2 nghiệm phân biệt là:
A . m ≥ 2 v à m ≤ 1
B . 0 < m < 1 v à m > 1
C . m > 2 v à m < 1
D . 0 < m < 1