a: \(=-5+3\sqrt{5}+1-\sqrt{5}+3-2\sqrt{5}=-1\)
b: \(=tan35^0\cdot tan55^0+cot55^0\cdot cot55^0=1+cot^255^0\)
a: \(=-5+3\sqrt{5}+1-\sqrt{5}+3-2\sqrt{5}=-1\)
b: \(=tan35^0\cdot tan55^0+cot55^0\cdot cot55^0=1+cot^255^0\)
* Thực hiện phép tính:
a. \(\dfrac{\sqrt{7}-5}{2}-\dfrac{6-2\sqrt{7}}{4}+\dfrac{6}{\sqrt{7}-2}-\dfrac{5}{4+\sqrt{7}}\)
b. \(\dfrac{2}{\sqrt{6}-2}+\dfrac{2}{\sqrt{6}+2}+\dfrac{5}{\sqrt{6}}\)
c. \(\dfrac{1}{\sqrt{3}+\sqrt{2}-\sqrt{5}}-\dfrac{1}{\sqrt{3}+\sqrt{2}+\sqrt{5}}\)
Thực hiện phép tính:
a) (\(\dfrac{6}{\sqrt{3}}\) - 2\(\sqrt{48}\)) (\(\sqrt{3}\) - 1)
b) \(\dfrac{\left(\sqrt{5}-1\right)^2}{\sqrt{5}-3}\) - \(\sqrt{9-4\sqrt{5}}\)
c) 3\(\sqrt{2a}\) - \(\sqrt{18a^3}\) + 4\(\sqrt{\dfrac{a}{2}}\) - \(\dfrac{1}{4}\)\(\sqrt{128a}\) với a \(\ge\) 0
11) \(\dfrac{5+\sqrt{5}}{5-\sqrt{5}}\) + \(\dfrac{5-\sqrt{5}}{5+\sqrt{5}}\)
12) \(\dfrac{3+2\sqrt{3}}{\sqrt{3}}\) + \(\dfrac{2+\sqrt{2}}{\sqrt{2}+1}\) - \(\dfrac{1}{2-\sqrt{3}}\)
1) Tính:
a) \(\sqrt{4.36}\)
b) (\(\sqrt{8}\) - 3\(\sqrt{2}\)) . \(\sqrt{2}\)
c)\(\dfrac{\sqrt{14}-\sqrt{7}}{1-\sqrt{2}}\)
d) \(\dfrac{2}{\sqrt{5}+2}\) + \(\dfrac{2}{\sqrt{5}-2}\)
Tính: a, \(\left(4\sqrt{2}-\dfrac{11}{2}\sqrt{8}-\dfrac{1}{3}\sqrt{288}+\sqrt{50}\right)\left(\dfrac{1}{2}\sqrt{2}\right)\)
b, \(\left(\dfrac{4}{5}\sqrt{5}-\dfrac{1}{3}\sqrt{\dfrac{1}{5}}+3\sqrt{20}+\dfrac{1}{2}\sqrt{245}\right)\div\sqrt{5}\)
RÚT GỌN BIỂU THỨC
A= \(\left(2+\dfrac{5-2\sqrt{5}}{2-\sqrt{5}}\right)\)\(\left(2+\dfrac{5+3\sqrt{5}}{3+\sqrt{5}}\right)\)
B= \(\left(\dfrac{15}{\sqrt{6}+1}+\dfrac{4}{\sqrt{6}-2}-\dfrac{12}{3-\sqrt{6}}\right)\)\(\left(\sqrt{6}+11\right)\)
* Thực hiện phép tính:
a. \(2\sqrt{18}-9\sqrt{50}+3\sqrt{8}\)
b. \(\left(\sqrt{7}-\sqrt{3}\right)^2+7\sqrt{84}\)
c. \(\left(\dfrac{6-2\sqrt{2}}{3-\sqrt{2}}\dfrac{5}{\sqrt{5}}\right):\dfrac{1}{2-\sqrt{5}}\)
* Tìm x, biết:
a. \(\sqrt{\left(2x+3\right)^2}=8\)
b. \(\sqrt{9x}-7\sqrt{x}=8-6\sqrt{x}\)
c. \(\sqrt{9x-9}+1=13\)
B1. ko sử dụng máy tính, rút gọn
\(D=\dfrac{1}{2}\sqrt{48}-\dfrac{\sqrt{33}}{\sqrt{11}}+5\sqrt{1\dfrac{1}{3}}\)
\(E=\sqrt{\dfrac{3-\sqrt{5}}{3+\sqrt{5}}}-\sqrt{\dfrac{3+\sqrt{5}}{3-\sqrt{5}}}\)
\(F=\sqrt{3+\sqrt{5}}+\sqrt{7-3\sqrt{5}}-\sqrt{2}\)
B2.
\(G=\dfrac{\sqrt{x}}{x-\sqrt{x}+1}\)
so sánh G với 1
B3. giải pt
\(\left\{{}\begin{matrix}\left(x-3\right)\left(2y+5\right)=\left(2x+7\right)\left(y-1\right)\\\left(4x+1\right)\left(3y-6\right)=\left(6x-1\right)\left(2y+3\right)\end{matrix}\right.\)
\(\left\{{}\begin{matrix}\left(x+y\right)\left(x-1\right)=\left(x-y\right)\left(x+1\right)+2xy\\\left(y-x\right)\left(y+1\right)=\left(y+x\right)\left(y-2\right)-2xy\end{matrix}\right.\)
1) Thực hiện phép tính:
a) A= \(\sqrt{243}\) -\(\sqrt{27}\)+ \(\sqrt{3}\) -\(\sqrt{48}\)
b) B= \(\dfrac{5+\sqrt{5}}{\sqrt{5}}\) +\(\dfrac{3+\sqrt{3}}{\sqrt{3}+1}\) -(\(\sqrt{3}\) + \(\sqrt{5}\) )
1) thực hiện phép tính:
a) \(\dfrac{4}{\sqrt{7}-\sqrt{3}}+\dfrac{6}{3+\sqrt{3}}+\dfrac{\sqrt{7}-7}{\sqrt{7}-1}\)
b) \(\sqrt{4+\sqrt{10+2\sqrt{5}}}+\sqrt{4-\sqrt{10+2\sqrt{5}}}\)
giúp mk vs ah mk đang cần gấp lắm