\(1+\dfrac{7}{n\left(n+8\right)}=\dfrac{n^2+8n+7}{n\left(n+8\right)}=\dfrac{\left(n+1\right)\left(n+7\right)}{n\left(n+8\right)}\)
\(\Rightarrow P=\left(1+\dfrac{7}{1.\left(1+8\right)}\right)\left(1+\dfrac{7}{2.\left(2+8\right)}\right)\left(1+\dfrac{7}{3.\left(3+8\right)}\right)...\left(1+\dfrac{7}{50.\left(50+8\right)}\right)\)
\(=\left(\dfrac{2.8}{1.9}\right).\left(\dfrac{3.9}{2.10}\right).\left(\dfrac{4.10}{3.11}\right)...\left(\dfrac{51.57}{50.58}\right)\)
\(=\dfrac{2.3.4...51}{1.2.3...50}.\dfrac{8.9.10...57}{9.10.11...58}=\dfrac{51}{1}.\dfrac{8}{58}=\dfrac{204}{29}\)