\(1.4.7+4.7.10+...+n\left(n+3\right)\left(n+6\right)\\ =\dfrac{n^2\left(n+1\right)^2}{4}+9\cdot\dfrac{n\left(n+1\right)\left(2n+1\right)}{6}+18\cdot\dfrac{n\left(n+1\right)}{2}\)
\(=\dfrac{n\left(n+1\right)\left(n^2+13n+42\right)}{4}=\dfrac{n\left(n+1\right)\left(n+6\right)\left(n+7\right)}{4}\)
Áp dụng vào bài toán:
\(P=\dfrac{2021.2022.2027.2028}{4}=...\)
CM:
Với \(n=1\Leftrightarrow1.4.7=28\)
\(\dfrac{n\left(n+1\right)\left(n+6\right)\left(n+7\right)}{4}=\dfrac{2.7.8}{4}=28\)
Giả sử \(n=k\Leftrightarrow1.4.7+4.7.10+...+k\left(k+3\right)\left(k+6\right)=\dfrac{k\left(k+1\right)\left(k+6\right)\left(k+7\right)}{4}\)
Với \(n=k+1\), cần cm:
\(1.4.7+4.7.10+...+k\left(k+3\right)\left(k+6\right)+\left(k+1\right)\left(k+4\right)\left(k+7\right)=\dfrac{\left(k+1\right)\left(k+2\right)\left(k+7\right)\left(k+8\right)}{4}\)
Ta có \(VT=\dfrac{k\left(k+1\right)\left(k+6\right)\left(k+7\right)}{4}+\left(k+1\right)\left(k+4\right)\left(k+7\right)\)
\(=\left(k+1\right)\left(k+7\right)\left[\dfrac{k\left(k+6\right)}{4}+k+4\right]=\left(k+1\right)\left(k+7\right)\left(\dfrac{k^2+10k+16}{4}\right)\\ =\dfrac{\left(k+1\right)\left(k+7\right)\left(k+2\right)\left(k+8\right)}{4}=VP\)
Do đó theo pp quy nạp ta đc đpcm