Tìm giá trị của tham số m để hàm số f ( x ) = x - 1 x 2 - 1 n ế u x ≠ 1 m 2 n ế u x = 1 liên tục tại x = 1
Cho hàm số f ( x ) = x 2 - 1 x + 1 và f(2) = m2 - 2 với x ≠ 2. Giá trị của m để f(x) liên tục tại x = 2 là:
Cho hàm số f ( x ) = x 2 - 1 x + 1 và f ( 2 ) = m 2 - 2 với x ≠ 2. Giá trị của m để f(x) liên tục tại x = 2 là:
A. 3
B. - 3
C. ± 3
D. ± 3
Cho hàm số f ( x ) = x 2 - 1 x + 1 và f ( 2 ) = m 2 - 2 với x ≢ 2 . Giá trị của m để f(x) liên tục tại x =2 là:
A. 3
B. - 3
C. ± 3
D. ± 3
Cho hàm số f x = x - 3 2 x - 3 k h i x ≠ 3 m k h i x = 3 . Tìm tất cả các giá trị của tham số thực m để hàm số liên tục tại x = 3.
A. m ∈ ∅
B. m ∈ R
C. m = 1
D. m = - 1
Câu 1:
Cho f(x)= \(\dfrac{\sqrt{x+2}-\sqrt{2-x}}{x}\), x≠0. Phải bổ sung thêm giá trị f(0) bằng bao nhiêu thì hàm số f(x) liên tục tại x=0?
Câu 2:
Xét tính liên tục của hàm số
a, f(x)= \(\left\{{}\begin{matrix}x+\dfrac{3}{2}\\\dfrac{\sqrt{x+1}-1}{\sqrt[3]{1+x}-1}\end{matrix}\right.\)khi x≤0 và x>0 tại xo=0
b, f(x)= \(\left\{{}\begin{matrix}\dfrac{x^3-x^2+2x-2}{x-1}\\3x+a\end{matrix}\right.\)với x<1 và với x≥1, xo=1
Giá trị nào của tham số m để hàm số f x = x 2 - 1 x + 1 k h i x ≠ - 1 m 2 - 4 k h i x = - 1 liên tục tại x= -1 .
A. 2
B. - 2
C. ± 2
D. ± 2
Cho hàm số f ( x ) = x 2 - x - 2 x - 2 ; x ≠ 2 m ; x = 2 . Với giá trị nào của tham số m thì hàm số đã cho liên tục tại điểm x m = 2 ?
A. m = 3
B. m = -3
C. m = -1
D. m = 1
F(x) = \(\left\{{}\begin{matrix}\dfrac{x^3-x^2+2x-2}{x-1}\left(x\ne1\right)\\3x+m\left(x=1\right)\end{matrix}\right.\)
Tại x0=1. Tìm m để hàm số liên tục tại x0=1