a) Cho x = \(\frac{\sqrt[3]{10+6\sqrt{3}}\left(\sqrt{3}-1\right)}{\sqrt{6+2\sqrt{5}}-\sqrt{5}}\)Tính giá trị biểu thức: A = \(\left(x^3-4x+1\right)^{2018}\)
b) Cho x = \(\sqrt[3]{7+5\sqrt{2}}-\frac{1}{\sqrt[3]{7+5\sqrt{2}}}\)Tính giá trị biểu thức: B = \(\left(x^3+3x-14\right)^{2018}\)
Đưa thừa số vào trong dấu căn:
c) 1/y√19yvới y >0 y d) 1 /3y√27/y2 y với y <0
Rút gọn biểu thức:
b) y/2+ 3/4 √1 -4y+ 4y2 với y< 1/2
. Thực hiện phép tính:
a)( 2/√3-1 +3/√3-2 +15/3-√3 )*1/√3+5
b,(√14-√7/1-√2 +√15-√5/1-√3)*1/√7 -√5
Cho biểu thức A = \(\dfrac{\sqrt{x}+2}{\sqrt{x}-3};B=\dfrac{\sqrt{x}+5}{\sqrt{x}+1}+\dfrac{\sqrt{x}-7}{1-x}\) với x ≥ 0;x ≠ 1;x ≠ 9
a, Tính giá trị biểu thức A khi x = 16
b,Chứng minh rằng: B = \(\dfrac{\sqrt{x}+2}{\sqrt{x}-1}\)
c, Tìm các giá trị x để \(\dfrac{4A}{A}\le\dfrac{x}{\sqrt{x}-3}\)
Bài 1: tìm x. Biết
a. x^2 =49
b. √2x =6
c. 2√x =6
d. √x-1 < √7
Bài 2: tính giá trị của biểu thức
a. √0.04 +√0.16
b. 70.08 + 14√0.36
c. (11- 4√3) . ( 11+ 4√3 )
d. ( 2 - √3 ) . ( 2 +√3 )
Tính giá trị của biểu thức:
a) S = 1/(1*3*5) + 1/(3*5*7) + ... + 1/(2011*2013*2015)
b) Tính T= (2tanx-3cotx)/(4tanx+5cotx) + 6sinx^2 - 7cos^3x biết cosx= 3/4
Tính giá trị các biểu thức
a) 2\(\sqrt{3}\)+ \(\sqrt{\left(2-\sqrt{3}\right)^2}\)
b) \(\frac{5+\sqrt{5}}{5-\sqrt{5}}+\frac{5-\sqrt{5}}{5+\sqrt{5}}\)
c) \(\frac{1}{7+4\sqrt{3}}+\frac{1}{7-4\sqrt{3}}\)
d) \(\sqrt{3+\sqrt{5}}+\sqrt{7-3\sqrt{5}}-\sqrt{2}\)
Rút gọn các biểu thức sau:
a) \(\left(\sqrt{8}-3\sqrt{2}+\sqrt{10}\right)\left(\sqrt{2}-3\sqrt{0,4}\right)\) b) \(\left(\sqrt{28}-2\sqrt{14}+\sqrt{7}\right).\sqrt{7}+7\sqrt{8}\)
c) \(2\sqrt{\left(\sqrt{2}-3\right)^2}+\sqrt{2\left(-3\right)^2}-5\sqrt{\left(-1\right)^4}\) d) \(\left(\frac{\sqrt{14}-\sqrt{7}}{1-\sqrt{2}}+\frac{\sqrt{15}-\sqrt{5}}{1-\sqrt{3}}\right):\frac{1}{\sqrt{7}-\sqrt{5}}\)
a) Cho a,b,c ∈ R thỏa mãn a+b+c = 0 và \(a^2+b^2+c^2\)=1. Tính giá trị của biểu thức S= \(a^2b^2+b^2c^2+c^2a^2\)
b) Cho đa thức bậc hai P(x) thỏa mãn P(1)=1, P(3)=3, P(7)=31. Tính giá trị của P(10)
1. Cho a + b = 1. Tìm giá trị nhỏ nhất của biểu thức : M = a3 + b3.
2. Cho a3 + b3 = 2. Tìm giá trị lớn nhất của biểu thức : N = a + b.
3. Cho a, b, c là các số dương. Chứng minh: a3 + b3 + abc ≥ ab(a + b + c)
4. Tìm liên hệ giữa các số a và b biết rằng: a b a b
5. a) Chứng minh bất đẳng thức (a + 1)2 ≥ 4a
b) Cho a, b, c > 0 và abc = 1. Chứng minh: (a + 1)(b + 1)(c + 1) ≥ 8
6. Chứng minh các bất đẳng thức:
a) (a + b)2 ≤ 2(a2 + b2) b) (a + b + c)2 ≤ 3(a2 + b2 + c2)
7. Tìm các giá trị của x sao cho:
a) | 2x – 3 | = | 1 – x | b) x2 – 4x ≤ 5 c) 2x(2x – 1) ≤ 2x – 1.
8. Tìm các số a, b, c, d biết rằng : a2 + b2 + c2 + d2 = a(b + c + d)
9. Cho biểu thức M = a2 + ab + b2 – 3a – 3b + 2001. Với giá trị nào của avà b thì M đạt giá trị nhỏ nhất ? Tìm giá trị nhỏ nhất đó.
10. Cho biểu thức P = x2 + xy + y2 – 3(x + y) + 3. CMR giá trị nhỏ nhất của P bằng 0.
11. Chứng minh rằng không có giá trị nào của x, y, z thỏa mãn đẳng thức sau :
x2 + 4y2 + z2 – 2a + 8y – 6z + 15 = 0
tính chính xác các giá trị biểu thức sau A= (1^3 * 2^3) : 3 + (2^3 * 3^3) : 5 + (3^3 * 4^3) : 7 +...+(99^3*100^3) : 199