Do x nguyên dương
TH1:x=1 Giả sử y=<z
PT<=>2(y+z)=yz-1<=>...<=>(y-2)(z-2)=5
Giải pt nghiệm nguyên dương được nghiệm (1;3;7)
TH2:x>=2
2(y+z)>=2(yz-1)
<=>yz-y-z =<1
<=>(y-1)(z-1) =<2 (1)
Do y,z nguyên dương nên y-1 và z-1 lớn hơn hoặc =0
=>(y-1)(z-1)>=0
Kết hợp với (1) có (y-1)(z-1)=0
hoặc (y-1)(z-1)=1
hoặc (y-1)(z-1)=2
Giải các pt nghiệm nguyên trên ta
KL: pt có các nghiệm (3;5;1),(6;2;1),(4;3;1),(3;1;5),(6;1;2),
(4;1;3),(2;2;3),(2;3;2),(1;3;7),(1;7;3...