a: =>2^x*4-2^x*3=32
=>2^x=32
=>x=5
b: =>(4x-3)^2-(4x-3)=0
=>(4x-3)(4x-3-1)=0
=>(4x-3)(4x-4)=0
=>x=3/4 hoặc x=1
c: =>7^2x+7^2x*7^3=344
=>7^2x=1
=>2x=0
=>x=0
d: =>(7x-3)^2012-(7x-3)^2010=0
=>(7x-3)^2010*[(7x-3)^2-1]=0
=>(7x-3)^2010*(7x-4)(7x-2)=0
=>x=2/7; x=4/7; x=3/7
e: =>(4x^2-3)^3=-8
=>4x^2-3=-2
=>4x^2=1
=>x^2=1/4
=>x=1/2 hoặc x=-1/2
a) 2x(22 - 3) = 32
2x.1=25
=> x = 5
b) (4x - 3)2 = 4x -3
=> (4x - 3)2 - (4x - 3) = 0
(4x-3)[(4x - 3) - 1] = 0
(4x-3)(4x - 4)=0
\(\Rightarrow\left[{}\begin{matrix}4x-3=0\\4x-4=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=\dfrac{3}{4}\\x=1\end{matrix}\right.\)
c) 72x + 72x+3 = 344
=> 72x(1 + 73) =344
72x . 344 = 344
=> 2x = 0 => x = 0
d) (7x - 3)2012 = (3 - 7x)2010
=> (7x - 3)2012 - (7x - 3)2010 = 0
(7x - 3)2010 [(7x - 3)2 - 1] = 0
\(\Rightarrow\left[{}\begin{matrix}7x-3=0\\\left(7x-3\right)^2=1\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=\dfrac{3}{7}\\7x=4\\7x=2\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=\dfrac{3}{7}\\x=\dfrac{4}{7}\\x=\dfrac{2}{7}\end{matrix}\right.\)
e) (4x2 - 3)3 + 8 = 0
(4x2 - 3)3 = (-2)3
=> 4x2 - 3 = -2
4x2 = 1
x2 = 1/4
=> \(x=\pm\dfrac{1}{2}\)