e) \(\left(x^2-8\right)\left(x-2023\right)-x+2023=0\)
\(\Rightarrow\left(x^2-8\right)\left(x-2023\right)-\left(x-2023\right)=0\)
\(\Rightarrow\left(x^2-8-1\right)\left(x-2023\right)=0\)
\(\Rightarrow\left(x^2-9\right)\left(x-2023\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x^2-9=0\\x-2023=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x^2=9\\x=2023\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\pm3\\x=2023\end{matrix}\right.\)
Vậy PT có cặp nghiệm \(S=\left\{\pm3;2023\right\}\)
g) \(x^4-2x^3+10x^2-20x=0\)
\(\Rightarrow\left(x^4-2x^3\right)+\left(10x^2-20x\right)=0\)
\(\Rightarrow x^3\left(x-2\right)+10x\left(x-2\right)=0\)
\(\Rightarrow\left(x^3+10x\right)\left(x-2\right)=0\)
\(\Rightarrow x\left(x^2+10\right)\left(x-2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x^2+10=0\\x-2=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x^2=-10\\x=2\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)
Vậy PT có cặp nghiệm \(S=\left\{0;2\right\}\)
f) \(x^3+27+\left(x-9\right)\left(x+3\right)=0\)
\(\Rightarrow x^3+3^3+\left(x-9\right)\left(x+3\right)=0\)
\(\Rightarrow\left(x+3\right)\left(x^2-3x+9\right)+\left(x-9\right)\left(x+3\right)=0\)
\(\Rightarrow\left(x+3\right)\left(x^2-3x+9+x-9\right)=0\)
\(\Rightarrow\left(x+3\right)\left(x^2-2x\right)=0\)
\(\Rightarrow x\left(x+3\right)\left(x-2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x+3=0\\x-2=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=-3\\x=2\end{matrix}\right.\)
Vậy PT có cặp nghiệm \(S=\left\{0;-3;2\right\}\)
h) \(x\left(x^2+1\right)-2x\left(x-2\right)-2\left(x^2+1\right)=0\)
\(\Rightarrow\left(x^2+1\right)\left(x-2\right)-2x\left(x-2\right)=0\)
\(\Rightarrow\left(x-2\right)\left(x^2-2x+1\right)=0\)
\(\Rightarrow\left(x-2\right)\left(x-1\right)^2=0\)
\(\Rightarrow\left[{}\begin{matrix}x-2=0\\\left(x-1\right)^2=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=2\\x-1=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=2\\x=1\end{matrix}\right.\)
Vậy PT có cặp nghiệm \(S=\left\{2;1\right\}\)
