Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
phalhan

Tìm x, biết

a) \(x^3-7x+6=0\)

b) \(x^4+4x^2-5=0\)

c) \(x^4+x^3-x^2-x=0\)

d) \(x^2+6x-x-6=0\)

e) \(x^2-4x+5x-20=0\)

f) \(x^2-10x+2x-20=0\)

g) \(x^4-x^3-x^2+1=0\)

h) \(x^5+x^4+x^3+x^2+x+1=0\)

i) \(x^2-9+\left(x+3\right)\left(3x-5\right)=0\)

j) \(64x^2-9+8x+3=0\)

Kiều Vũ Linh
6 tháng 10 lúc 7:39

a) x³ - 7x + 6 = 0

x³ - x - 6x + 6 = 0

(x³ - x) - (6x - 6) = 0

x(x² - 1) - 6(x - 1) = 0

x(x - 1)(x + 1) - 6(x - 1) = 0

(x - 1)[x(x + 1) - 6] = 0

(x - 1)(x² + x - 6) = 0

(x - 1)(x² - 2x + 3x - 6) = 0

(x - 1)[(x² - 2x) + (3x - 6)] = 0

(x - 1)[x(x - 2) + 3(x - 2)] = 0

(x - 1)(x - 2)(x + 3) = 0

x - 1 = 0 hoặc x - 2 = 0 hoăkc x + 3 = 0

*) x - 1 = 0

x = 1

*) x - 2 = 0

x = 2

*) x + 3 = 0

x = -3

Vậy x = -3; x = 1; x = 2

a: \(x^3-7x+6=0\)

=>\(x^3-x-6x+6=0\)

=>\(x\left(x^2-1\right)-6\left(x-1\right)=0\)

=>x(x-1)(x+1)-6(x-1)=0

=>(x-1)(x^2+x-6)=0

=>(x-1)(x+3)(x-2)=0

=>\(\left[\begin{array}{l}x-1=0\\ x+3=0\\ x-2=0\end{array}\right.\Rightarrow\left[\begin{array}{l}x=1\\ x=-3\\ x=2\end{array}\right.\)

b: \(x^4+4x^2-5=0\)

=>\(x^4+5x^2-x^2-5=0\)

=>\(\left(x^2+5\right)\left(x^2-1\right)=0\)

=>\(x^2-1=0\)

=>\(x^2=1\)

=>\(\left[\begin{array}{l}x=1\\ x=-1\end{array}\right.\)

c: \(x^4+x^3-x^2-x=0\)

=>\(x^3\left(x+1\right)-x\left(x+1\right)=0\)

=>\(\left(x+1\right)\left(x^3-x\right)=0\)

=>\(x\left(x+1\right)^2\cdot\left(x-1\right)=0\)

=>\(\left[\begin{array}{l}x=0\\ x+1=0\\ x-1=0\end{array}\right.\Rightarrow\left[\begin{array}{l}x=0\\ x=-1\\ x=1\end{array}\right.\)

d: \(x^2+6x-x-6=0\)

=>x(x+6)-(x+6)=0

=>(x+6)(x-1)=0

=>\(\left[\begin{array}{l}x+6=0\\ x-1=0\end{array}\right.\Rightarrow\left[\begin{array}{l}x=-6\\ x=1\end{array}\right.\)

e: \(x^2-4x+5x-20=0\)

=>x(x-4)+5(x-4)=0

=>(x-4)(x+5)=0

=>\(\left[\begin{array}{l}x-4=0\\ x+5=0\end{array}\right.\Rightarrow\left[\begin{array}{l}x=4\\ x=-5\end{array}\right.\)

f: \(x^2-10x+2x-20=0\)

=>x(x-10)+2(x-10)=0

=>(x-10)(x+2)=0

=>\(\left[\begin{array}{l}x-10=0\\ x+2=0\end{array}\right.\Rightarrow\left[\begin{array}{l}x=10\\ x=-2\end{array}\right.\)

g: \(x^4-x^3-x^2+1=0\)

=>\(x^3\left(x-1\right)-\left(x^2-1\right)=0\)

=>\(x^3\left(x-1\right)-\left(x-1\right)\left(x+1\right)=0\)

=>\(\left(x-1\right)\left(x^3-x-1\right)=0\)

TH1: x-1=0

=>x=1

TH2: \(x^3-x-1=0\)

=>x≃1,32

h: \(x^5+x^4+x^3+x^2+x+1=0\)

=>\(x^3\left(x^2+x+1\right)+\left(x^2+x+1\right)=0\)

=>\(\left(x^2+x+1\right)\left(x^3+1\right)=0\)

\(x^2+x+1=\left(x+\frac12\right)^2+\frac34\ge\frac34>0\forall x\)

nên \(x^3+1=0\)

=>\(x^3=-1\)

=>x=-1

i: \(x^2-9+\left(x+3\right)\left(3x-5\right)=0\)

=>(x-3)(x+3)+(x+3)(3x-5)=0

=>(x+3)(x-3+3x-5)=0

=>(x+3)(4x-8)=0

=>4(x+3)(x-2)=0

=>(x+3)(x-2)=0

=>\(\left[\begin{array}{l}x+3=0\\ x-2=0\end{array}\right.\Rightarrow\left[\begin{array}{l}x=-3\\ x=2\end{array}\right.\)

j: \(64x^2-9+8x+3=0\)

=>(8x+3)(8x-3)+(8x+3)=0

=>(8x+3)(8x-3+1)=0

=>(8x+3)(8x-2)=0

=>\(\left[\begin{array}{l}8x+3=0\\ 8x-2=0\end{array}\right.\Rightarrow\left[\begin{array}{l}x=-\frac38\\ x=\frac28=\frac14\end{array}\right.\)


Các câu hỏi tương tự
Phương Trần Lê
Xem chi tiết
Lưu Hạ Vy
Xem chi tiết
trần thị hoàng yến
Xem chi tiết
Nguyễn Thị Hồng Anh
Xem chi tiết
Nguyễn Thị Hồng Anh
Xem chi tiết
Nguyễn Thị Hồng Anh
Xem chi tiết
Nguyễn Thị Hồng Anh
Xem chi tiết
Vân Nguyễn lê
Xem chi tiết
NGo HOANG 2
Xem chi tiết
Nguyễn Thái Hà
Xem chi tiết