Thay điểm A vào đường thẳng d1 và d2 ta thấy A đều không thuộc hai đường thẳng đó
\(\Rightarrow\) d1, d2 là phương trình của các đường cao kẻ từ đỉnh B và đỉnh C
Giả sử d1 là đường cao kẻ từ B
Vì \(d_1\perp AC\Rightarrow\) phương trình đường thẳng AC có dạng:
\(x-y+m=0\)
Vì \(A\left(2;2\right)\in AC\Rightarrow2-2+m=0\Rightarrow m=0\)
\(\Rightarrow x-y=0\left(AC\right)\)
\(\Rightarrow\) C có tọa độ là nghiệm của hệ \(\left\{{}\begin{matrix}x-y=0\left(AC\right)\\9x-3y+4=0\left(d_2\right)\end{matrix}\right.\Leftrightarrow x=y=-\dfrac{2}{3}\)
\(\Rightarrow C=\left(-\dfrac{2}{3};-\dfrac{2}{3}\right)\)
Tương tự ta tìm được \(B=\left(-1;3\right)\)