Cho tam giác ABC có A( -3; 7) ; B( 0; 8) ; C(-1; -4).
a) Viết phương trình của đường thẳng AB.
b) Tính độ dài đường cao kẻ từ C.
c) Tính \(\widehat{C}\) của \(\Delta\)ABC
Cho phương trình của các cạnh và đường cao của tam giác ABC là :
AB: 2x-y+2=0; BH: x=0; AH: x-2y+1=0. Tìm A,B,C và viết phương trình đường cao CH. Tính diện tích tam giác. Tìm M,N,P đối xứng với A qua Ox, Oy và BC
cho tam giác ABC có A(4;-2).Đường cao BH:2x+y-4=0,đường cao CK:x-y-3=0.Viết phương trình đường cao kẻ từ đỉnh A.
Bài 1: Cho ∆ABC có đỉnh A(2;2) và hai đường cao lần lượt có phương trình 9x-3y-4=0, x+y-2=0. Viết phương trình các đường thẳng chứa AB,BC,AC
Bài 2: Lập phương trình các cạnh của ∆ABC biết đỉnh A(4;-1), đường cao và trung tuyến kẻ từ một đỉnh B có phương trình là: 2x-3y+12=0 và 2x+3y=0
Cho tam giác ABC, tìm tọa độ các đỉnh B,C biết A(4; -1); phương trình đường cao kẻ từ B là d: 2x - 3y = 0. Phương trình trung tuyến đi qua C là d1 : 2x +3y = 0