Có : \(A=\dfrac{x+1}{x-2}=\dfrac{x-2+3}{x-2}=\dfrac{x-2}{x-2}+\dfrac{3}{x-2}=1+\dfrac{3}{x-2}\)
Để `A∈Z <=> 1 + 3/(x-2) ∈Z`
Mà `1∈Z`
`<=> 3/(x-2) ∈Z`
`<=> 3 ⋮ x-2`
`=> x-2 ∈ Ư(3)`
`=> x-2 ∈ { -1;-3;1;3}`
`=> x ∈ {1;-1;3;5}`
Vậy `x ∈ {1;-1;3;5}` Để `A` nguyên
Để A là số nguyên thì \(x+1⋮x-2\)
=>\(x-2+3⋮x-2\)
=>\(3⋮x-2\)
=>\(x-2\in\left\{1;-1;3;-3\right\}\)
=>\(x\in\left\{3;1;5;-1\right\}\)