Cho hàm số y = x 4 - 2 ( 1 - m 2 ) x 2 + m + 1 . Tìm tất cả các giá trị của tham số m để hàm số có cực đại, cực tiểu và các điểm cực trị của đồ thị hàm số lập thành tam giác có diện tích lớn nhất
A. m = 0
B. m = - 1 2
C. m = 1
D. m = 1 2
Tìm tất cả các giá trị nguyên của tham số thực m để hàm số y = 1 3 x 3 + 1 2 m x 2 có điểm cực đại x 1 , điểm cực tiểu x 2 và - 2 < x 1 < - 1 , 1 < x 2 < 2 .
A. m > 0
B. m < 0
C. m = 0
D. Không có m
Có tất cả bao nhiêu giá trị nguyên của tham số thực m để đồ thị của hàm số y = x 3 3 − x 2 2 m + 2 + 2 m x + 1 có một điểm cực đại và một điểm cực tiểu đồng thời chúng nằm về cùng một phía so với đường thẳng d : x + y − 1 = 0
A. 3
B. 4
C. 5
D. 6
Để đồ thị hàm số y = - x 4 - ( m - 3 ) x + 2 m + 1 có điểm cực đại mà không có điểm cực tiểu thì tất cả các giá trị thực của tham số m là
A. m ≤ 3
B. m < 3
C. m ≥ 3
D. m > 3
Cho hàm số y = x 4 - 2 ( 1 - m 2 ) x 2 + m + 1 . Tìm tất các giá trị của tham số m để hàm số cực đại, cực tiểu và các điểm cực trị của đồ thị lập thành một tam giác có diện tích lớn nhất
A. m = 1 2
B. m = 0
C. m = 1
D. m = - 1 2
Cho hàm số y = 2 x 3 + 3 m − 1 x 2 + 6 m − 2 x − 1 với m là tham số thực. Tìm tất cả các giá trị của m để hàm số có điểm cực đại và điểm cực tiểu nằm trong khoảng (-2;3)
A. m ∈ − 1 ; 4 \ 3 .
B. m ∈ 3 ; 4 .
C. m ∈ 1 ; 3 .
D. m ∈ − 1 ; 4 .
Cho đồ thị hàm số y = a x 3 + b x 2 + c x + d có điểm cực đại là A(-2;2), điểm cực tiểu là B(0;-2). Tìm tất cả các giá trị của m để phương trình a x 3 + b x 2 + c x + d = m có 3 nghiệm phân biệt.
A. m > 2
B. m < - 2
C. - 2 < m < 2
D. m = 2 m = - 2
Tìm tất cả các giá trị của m để đồ thị hàm số y = m 2 - 1 x 4 + m x 2 + m - 2 chỉ có một điểm cực đại và không có điểm cực tiểu
A. - 1 , 5 < m ⩽ 0 .
B. m ⩽ - 1
C. - 1 ⩽ m ⩽ 0
D. - 1 < m < 0 , 5
Để đồ thị hàm số y = - x 4 - ( m - 3 ) x 2 + m + 1 có điểm cực đại mà không có điểm cực tiểu thì tất cả giá trị thực của tham số m là:
A. m ≥ 3
B. m > 3.
C. m ≤ 3
D. m < 3