Tìm nghiệm nguyên của các phương trình sau:
a,X^2 +xy +y^2=x^2y^2
b, 12x -7y =45
c, x^2 -2x – y^2 = 11
d, x^2+2y^2+3xy-x-y+3 =0
Trong không gian với hệ tọa độ Oxyz, cho bốn đường thẳng có phương trình d 1 : x - 1 1 = y - 2 2 = z - 2 , d 2 : x - 2 2 = y - 2 4 = z - 4 ; d 3 : x 2 = y 1 = z - 1 1 , d 4 : x - 2 2 = y 2 = z - 1 - 1 . Biết rằng đường thẳng Δ có véctơ chỉ phương u → (2;b;c)cắt cả bốn đường thẳng đã cho. Giá trị của biểu thức 2a+3b bằng
A. 5.
B. -1.
C. - 3 2 .
D. - 1 2 .
Trong không gian với hệ tọa độ Oxyz, cho bốn đường thẳng có phương trình d 1 : x - 1 1 = y - 2 2 = z - 2 , , d 2 : x - 2 2 = y - 2 4 = z - 4 , d 3 : x 2 = y 1 = z - 1 1 , d 4 : x - 2 2 = y 2 = z - 1 - 1 . Biết rằng đường thẳng ∆ có véctơ chỉ phương u ⇀ = 2 ; b ; c cắt cả bốn đường thẳng đã cho. Giá trị của biểu thức 2 a + 3 b bằng
A. 5.
B. - 1 .
C. - 3 2
D. - 1 2
Trong không gian Oxyz, cho 2 đường thẳng chéo nhau d: d : x - 3 - 4 = y + 2 1 = z + 1 1 và d ' : x - 6 = y - 1 1 = z - 2 2 . Phương trình nào dưới đây là phương trình đường thẳng vuông góc chung của d và d’
A. x + 1 1 = y + 1 2 = z 2
B. x - 1 1 = y - 1 2 = z 2
C. x + 1 1 = y - 1 2 = z 2
D. x - 1 1 = y - 1 2 = z + 1 2
Trong không gian Oxyz, cho đường thẳng d: x - 1 1 = y - 1 1 = z - 1 1 và mặt phẳng (P):x+2y+2z-5=0. Viết phương trình đường thẳng Δ nằm trong mặt phẳng (P), vuông góc với d và cách điểm A(-5;-2;-2) một khoảng nhỏ nhất.
A. △ : x = 13 y = - 2 + t z = - 2 - t
B. △ : x = 1 y = 1 + t z = 1 - t
C. △ : x = - 3 y = 2 + t z = 2 - t
D. △ : x = - 5 y = 3 + t z = 2 - t
a, 7/11 - ( 3/5 + 7/11 )
b, ( 11/22 + 5/11 ) - 19/22
c, 2/9 . 4/5 + 2/9 . 14/5
d, -3/2 . 7/10 -3/2 . 1/10
e, ( 0,75 - 1 + 1/4 ) : ( 1515/1616 + 1616/1717 )
Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d 1 v à d 2 lần lượt có phương trình là x − 1 1 = y − 2 3 = z − 3 − 1 , x − 2 − 2 = y + 2 1 = z − 1 3 . Tìm tọa độ giao điểm M của d 1 và d.
A. M = (0;–1;4)
B. M = (0;1;4)
C. M = (–3;2;0)
D. M = (3;0;5)
Cho hai điểm A(1;2;3), B(2;0;4) và đường thẳng ( d ) : x - 1 1 = y - 2 1 = z - 1 - 2 . Mặt phẳng qua A, B và song song với (d) có phương trình là
A. x+y+z-6=0
B. 2x+y+z-4=0
C. x-y+z-6=0
D. x-y+2z-10=0
Trong không gian với hệ trục tọa độ Oxyz, cho mặt cầu ( S ) : ( x - 1 ) 2 + ( y + 1 ) 2 + z 2 = 11 và hai đường thẳng d 1 : x - 5 1 = y + 1 1 = z - 1 2 , d 2 : x + 1 1 = y 2 = z 1 . Phương trình tất cả các mặt phẳng tiếp xúc với mặt cầu ( S ) đồng thời song song với hai đường thẳng d 1 , d 2
A. 3 x - y - z - 7 = 0
B. 3 x - y - z - 7 = 0 v à 3 x - y - z - 15 = 0
C. 3 x - y - z + 7 = 0
D. 3 x - y - z - 15 = 0
Cho điểm A(-4;1;3) và đường thẳng d : x + 1 - 2 = y - 1 1 = z + 3 3 . Viết phương trình mặt phẳng (P) qua A và vuông góc với đường thẳng d
A. 2 x - y - 3 z + 36 = 0
B. 2 x - y - 3 z - 18 = 0
C. 2 x - y + 3 z = 0
D. 2 x - y - 3 z + 18 = 0