1+2+3+...+n=[n.(n+1)]:2
Ta có 1+2+3+...+n=aaa
=>[n.(n+1)]:2=aaa=a.111=a.3.37
=>n.(n+1)=a.3.37.2=(a.3.2).37=6a.37
Nhận thấy n.(n+1) là tích 2 số tự nhiên liên tiếp
=>6a.37 cũng là tích 2 số tự nhiên liên tiếp
Xét:
+)6a=36=>a=6( thỏa mãn)
+)6a=38=>a=19/3( ko thỏa mãn a là số tự nhiên)
Do đó a=6
Thay a=6 vào 6a.37=6.6.37=36.37=1332
Khi đó n.(n+1)=1332=36.37=36.(36+1)
=>n=36
Vậy a=6;n=36
Từ 1 đến n có n số hạng
=> 1 + 2 + .... + n = \(\frac{\left(n+1\right)n}{2}\)
Mà theo bài ra ta có : 1 + 2 + 3 + ... + n = aaa
=> \(\frac{\left(n+1\right)n}{2}\) = aaa
=> n.( n + 1 ) = 2.3.37.a
Vì tích n.( n + 1 ) chia hết cho nguyên tố 37 nên n hoặc n + 1 chia hết cho 37
Vì \(\frac{n\left(n+1\right)}{2}\) có 3 chữ số => n + 1 < 74 => n = 37 hoặc n + 1 = 37
+) với n = 37 thì \(\frac{37.38}{2}\) = 703 ( loại )
+) với n + 1 = 37 thì \(\frac{36.37}{2}\) = 666 ( thỏa mãn )
Vậy n = 36 và a = 6 . Ta có 1 + 2 + 3 + .... + 36 = 666
1 + 2 + 3 + ... + n = aaa
=> ( n + 1 ).n: 2 = 3.37.a
=> n.( n + 1 ) = 6a.37
Vì n.( n + 1 ) là tích 2 số liên tiếp nên 6a.37 là tích 2 số tự nhiên liên tiếp
=> 6a = 36
=> a = 6 ( vì a ∈ N )
Do đó n.( n + 1 ) = 36.37
=> n = 36 ( vì n ∈N∈N*)
Vậy n = 36; a = 6