Tìm tất cả giá trị của tham số m để phương trình \(\left(sinx-2m+1\right)\left(2cosx-1\right)=0\)
a) Có 2 nghiệm thuộc \([-\dfrac{\pi}{2};\dfrac{5\pi}{6}]\)
b) Có 3 nghiệm thuộc \([-\dfrac{\pi}{2};\dfrac{5\pi}{6}]\)
Tìm số nghiệm của phương trình sin8x + cos4x = 1 + 2sin2x cos6x thuộc - π ; π
A. 6
B. 5
C.7
D.9
Tìm giá trị của m để phương trình \(\dfrac{sinx-m}{2cosx+\sqrt{3}}=0\) có đúng hai nghiệm thuộc \((0;\dfrac{5\pi}{2}]\)
Số nghiệm của phương trình : \(\sin3x+\cos3x+2\cos x=0\) thuộc \(\left[-\dfrac{\pi}{2};\dfrac{\pi}{2}\right]\) là
Phương trình: 3sin3x+ 3 cos9x= 2cosx+4 sin 3 3 x có số nghiệm trên 0 ; π 2 là
A. 2
B. 3
C. 4
D. lớn hơn hoặc bằng 5 nghiệm
Phương trình \(sin\left(x^2-5x\right)=\dfrac{-\sqrt{3}}{2}\) có bao nhiêu nghiệm thuộc \(\left[0;\dfrac{\pi}{2}\right]\)
Giải các phương trình sau sin 6 x + cos 6 x + sin 4 x / 2 = 0
1) cho góc x thỏa mãn \(cosx=-\dfrac{4}{5}\) và \(\pi< x< \dfrac{3\pi}{2}\) tính \(P=tan\left(x-\dfrac{\pi}{4}\right)\)
2) giải phương trình \(2cosx-\sqrt{2}=0\)
3) phương trình lượng giác \(cos3x=cos\dfrac{\pi}{15}\) có nghiệm là
1/ Giải phương trình sau:
\(tan^2\left(x+\dfrac{\pi}{3}\right)+\left(\sqrt{3}-1\right)tan\left(x+\dfrac{\pi}{3}\right)-\sqrt{3}=0\)
2/ Tìm hệ số của số hạng chứa \(x^{26}\) trong khai triển \(\left(\dfrac{1}{x^4}+x^7\right)^n\) . Biết \(C^2_{n+2}-4C^n_{n+1}=2\left(n+1\right)\) (n ∈ N* ; x > 0)