a: \(F\left(x\right)=\int tan^2x.dx=\int\left(tan^2x+1-1\right)dx\)
\(=tanx-x+C\)
\(F\left(\dfrac{\Omega}{4}\right)=-2\)
=>\(tan\left(\dfrac{\Omega}{4}\right)-\dfrac{\Omega}{4}+C=2\)
=>\(C=1+\dfrac{\Omega}{4}\)
=>\(F\left(x\right)=tanx-x+1+\dfrac{\Omega}{4}\)
b: \(F\left(x\right)=\int f\left(x\right)=\int\left(cot^2x-2\right)dx=\int\left(cot^2x+1-3\right)dx\)
=-cotx-3x+C
\(F\left(\dfrac{\Omega}{4}\right)=15\)
=>\(-cot\left(\dfrac{\Omega}{4}\right)-3\cdot\dfrac{\Omega}{4}+C=15\)
=>\(-1-\dfrac{3\Omega}{4}+C=15\)
=>\(C=16+\dfrac{3\Omega}{4}\)
=>\(F\left(x\right)=-cotx-3x+16+\dfrac{3\Omega}{4}\)