a: f(x)=3-5sinx
=>\(F\left(x\right)=\int\left(-5\cdot sinx+3\right)dx=5\cdot cosx+3x+C\)
\(F\left(\dfrac{\Omega}{2}\right)=2\)
=>\(5\cdot cos\left(\dfrac{\Omega}{2}\right)+\dfrac{3\Omega}{2}+C=2\)
=>\(C=2-\dfrac{3}{2}\Omega\)
=>\(F\left(x\right)=5cosx+3x+2-\dfrac{3}{2}\Omega\)
b: f(x)=x-2*cosx
=>\(F\left(x\right)=\int\left(x-2\cdot cosx\right)dx=\dfrac{1}{2}x^2-2\cdot sinx+C\)
\(F\left(\Omega\right)=\dfrac{1}{2}\)
=>\(\dfrac{1}{2}\cdot\Omega^2-2\cdot sin\left(\Omega\right)+C=\dfrac{1}{2}\)
=>\(C=\dfrac{1}{2}-\dfrac{1}{2}\Omega^2\)
=>\(F\left(x\right)=\dfrac{1}{2}x^2-2\cdot sinx+\dfrac{1}{2}-\dfrac{1}{2}\Omega^2\)