a) \(\left(x-5\right)\left(3-2x\right)\left(3x+4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-5=0\\3-2x=0\\3x+4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\2x=3\\3x=-4\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=5\left(tm\right)\\x=\dfrac{3}{2}\left(ktm\right)\\x=\dfrac{-4}{3}\left(ktm\right)\end{matrix}\right.\)
Vậy phương trình có duy nhất 1 nghiệm nguyên là \(x=5\).
\(\left(x-5\right)\left(3-2x\right)\left(3x+4\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x-5=0\\3-2x=0\\3x+4=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=5\\2x=3\\3x=-4\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=5\\x=\dfrac{3}{2}\\x=-\dfrac{4}{3}\end{matrix}\right.\)
Vậy: ...