\(A=-x^2-4x-y^2+2y=-\left(x^2+2\times x\times2+2^2-2^2+y^2-2\times y\times1+1^2-1^2\right)=-\left[\left(x+2\right)^2+\left(y-1\right)^2-5\right]\)
\(\left(x+2\right)^2\ge0\)
\(\left(y-1\right)^2\ge0\)
\(\left(x+2\right)^2+\left(y-1\right)^2-5\ge-5\)
\(-\left[\left(x+2\right)^2+\left(y-1\right)^2-5\right]\le5\)
Vậy Max A = 5 khi x = - 2 và y = 1
\(A=-x^2-4x-y^2+2y\)
\(=-\left(x^2+4x+y^2-2y\right)\)
\(=2y-\left(x+y\right)^2\le2y\)
\(MinA=2y\)