Cho hàm số y = f ( x ) = x - m 2 x + 4 với m là số thực. Tìm giá trị lớn nhất của m để hàm số f(x) có giá trị nhỏ nhất trên [0;1] bằng -1
A. m = 2
B. m = 0
C. m 6
D. m = 3
Cho hàm số f x = x - m 2 + m x + 1 . Tìm giá trị của tham số m để giá trị nhỏ nhất của hàm số f(x) trên đoạn [ 0;1 ] bằng -2
A. m ∈ - 1 ; 2
B. m ∈ 1 ; - 2
C. m ∈ 1 ; 2
D. m ∈ - 1 ; - 2
Số các giá trị thực của tham số m để giá trị nhỏ nhất của hàm số y = x - m 2 + m x + 1 trên đoạn [0;1] bằng -2 là:
A. 2
B. 0
C. 3
D. 1
Tìm tất cả các giá trị của m để giá trị nhỏ nhất của hàm số y = x + m 2 + 2 x + m 2 − 1 trên đoạn [0;1] bằng 8
A. m = ± 3
B. m = ± 3
C. m = ± 1
D. m = 3
Cho hàm số y = m x + 1 2 x − 1 (m là tham số, m ≠ 2 ). Gọi a, b lần lượt giá trị lớn nhất, giá trị nhỏ nhất của hàm số trên 1 ; 3 . Khi đó có bao nhiêu giá trị của m để a . b = 1 5 .
A. 0
B. 2
C. 1
D. 3
Gọi M và m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x 2 - 3 x + 6 x - 2 trên đoạn [ 0;1]. Giá trị của M +2m bằng
A. - 11
B. - 10
C. 11
D. 10
Gọi M và m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x 2 - 3 x + 6 x - 2 trên đoạn [0;1]. Giá trị của M+2m bằng
A. -11
B. -10
C. 11
D. 10
Cho hàm số y = x 2 - m + m 2 - 4 x + 4 m + 2 m 2 - 4 m ≠ 0 . Gọi giá trị lớn nhất, giá trị nhỏ nhất của hàm số trên 0 ; 1 lần lượt là y 1 ; y 2 . Số giá trị của m để y 1 - y 2 = 8
A. 2
B. 0
C. 1
D. 4
Cho hàm số f (x) có đạo hàm cấp hai liên tục trên đoạn [0;1] thoả mãn f ' ( x ) 2 + f x f ' ' x ≥ 1 ∀ m ∈ 0 ; 1 và f 2 0 + f 0 . f ' 0 = 3 2 Giá trị nhỏ nhất của tích phân ∫ 0 1 f 2 x d x bằng
A. 5 2
B. 1 2
C. 11 6
D. 7 2