Trường hợp 1: m=2
f(x)=2x+4
=>Loại
Trường hợp 2: m<>2
\(\text{Δ}=\left(4m-6\right)^2-4\left(m-2\right)\left(5m-6\right)\)
\(=16m^2-48m+36-4\left(5m^2-6m-10m+12\right)\)
\(=16m^2-48m+36-4\left(5m^2-16m+12\right)\)
\(=16m^2-48m+36-20m^2+64m-48\)
\(=-4m^2+16m-12\)
\(=-4\left(m-3\right)\left(m-1\right)\)
Để f(x)>=0 với mọi x thì \(\left\{{}\begin{matrix}-4\left(m-3\right)\left(m-1\right)< 0\\m-2>=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m\in\left(-\infty;1\right)\cup\left(3;+\infty\right)\\m>=2\end{matrix}\right.\Leftrightarrow m\in\left(3;+\infty\right)\)