Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Cold Boy

Tìm GTNN của biểu thức : \(A=x^4-2x^3+3x^2-4x+2015\)

Nguyễn Văn Hạ
18 tháng 2 2019 lúc 21:45

\(x^4-2x^3+3x^2-4x+2015=\left(x^2-x\right)^2+2\left(x-1\right)^2+2013\)

Mà \(\left(x^2-x\right)^2\ge0\forall x\)\(\left(x-1\right)^2\ge0\forall x\)

\(\Rightarrow Min=2013\)

Dấu "=" xảy ra \(\Leftrightarrow x=1\)

tth_new
19 tháng 2 2019 lúc 19:03

Cách này cũng khá giống của bạn Nguyễn Văn Hạ nhưng mình nghĩ dễ bến đối hơn chỗ \(x^4-2x^3+x^2\rightarrow x^2\left(x-1\right)^2\)

\(A=\left(x^4-2x^3+x^2\right)+\left(2x^2-4x+2015\right)\)

\(=x^2\left(x-1\right)^2+2\left(x-1\right)^2+2013\ge2013\)

Dấu "=" xảy ra khi x - 1 = 0 tức là x = 1

Vậy \(A_{min}=2013\Leftrightarrow x=1\)

Tống Thị Ngọc Hà
2 tháng 3 2020 lúc 14:41

x=0 nữa chứ

Khách vãng lai đã xóa

Các câu hỏi tương tự
đỗ thanh hà
Xem chi tiết
Thư Nguyễn Anh
Xem chi tiết
marie
Xem chi tiết
Trương Tiểu Hàn
Xem chi tiết
Trương Tiểu Hàn
Xem chi tiết
Trương Tiểu Hàn
Xem chi tiết
Trương Tiểu Hàn
Xem chi tiết
Phương Linh
Xem chi tiết
thiên thần
Xem chi tiết