Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Thị Kỳ Duyên

Tìm giá trị nhỏ nhất
D=5x2+8xy+5y2-2x+2y
E=2x2+4y2-4xy-4x-4y+2016
F=x2+xy+y2-3x-3y+1989​

​​​

 

Nguyễn Như Quỳnh
30 tháng 7 2016 lúc 20:54

D= 5x^2+8xy+5y^2-2x+2y  

=4x^2+8xy+4y^2-2x+2y+y^2+x^2

=(2x+2y)^2+x^2-2*1/2x+1/4+y^2+2*1/2y+1/4-1/2

(2x+2y)^2+(x-1/2)^2+(y+1/2)^2-1/2>=-1/2

suy ra D>=-1/2 nên D có GTNN là -1/2

Thiên Thiên Chanyeol
30 tháng 7 2016 lúc 20:57

Ta có : 5D = 25x2 + 40xy + 25y2 - 10x + 10y

5D = (5x+ 4y - 1)2 + 9y2 + 18y - 1  

5D = ( 5x + 4y - 1)2 + 9 (y + 1)- 2

D =\(\frac{1}{5}\). ( 5x + 4y - 1)2 + \(\frac{9}{5}\).( y + 1) -  \(\frac{2}{5}\)  \(\ge\)\(\frac{-2}{5}\)

Dấu "=" xảy ra khi y+1 = 0  \(\Leftrightarrow\)y = -1

                          5x + 4y - 1 = 0  \(\Leftrightarrow\)x=1

Vậy GTNN của D = \(\frac{-2}{5}\)khi x = 1 ; y = -1

Thiên Thiên Chanyeol
30 tháng 7 2016 lúc 21:13

Ta có: 2E = 4x2 + 8y2 - 8xy - 8x - 8y + 4006

2E = ( 4y - x - 1)2 + x2 - 6x + 4003

2E = ( 4y - x - 1)2 + ( x - 3)2 + 4003 - 9

E = \(\frac{1}{2}\).( 4y - x - 1)2 +\(\frac{1}{2}\).( x - 3 )2 + 1997 \(\ge\)1997

Dấu "=" xảy ra khi x - 3 = 0  \(\Leftrightarrow\)x = 3

                            4x - x -1 = 0  \(\Leftrightarrow\)y = 1

Vậy GTNN của E = 1997 khi x = 3 ; y = 1


Các câu hỏi tương tự
Thao Cao Phuong
Xem chi tiết
Mai Trang Nguyễn
Xem chi tiết
khangnip
Xem chi tiết
Trương Ngọc Anh Tuấn
Xem chi tiết
Tớ Chưa Bồ
Xem chi tiết
Cíu iem
Xem chi tiết
Edogawa Conan
Xem chi tiết
Tuyết Ly
Xem chi tiết
Hoàng văn tiến
Xem chi tiết