c: \(C=\left(x+2\right)^{20}+\left(y-1\right)^{20}+75>=75\)
Dấu '=' xảy ra khi x=-2 và y=1
d: \(D=\left(x-1\right)^2+\left(x+y-5\right)^4-50>=-50\)
Dấu '=' xảy ra khi x=1 và y=4
`c)`\(C=\left(x+2\right)^{20}+\left(y-1\right)^{20}+75\)
Ta có: \(\left\{{}\begin{matrix}\left(x+2\right)^{20}\ge0\\\left(y-1\right)^{20}\ge0\end{matrix}\right.\)
\(\Rightarrow C\ge75\)
Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}x=-2\\y=1\end{matrix}\right.\)
`d)`\(D=\left(x-1\right)^2+\left(x+y-5\right)^4-50\)
Ta có: \(\left\{{}\begin{matrix}\left(x-1\right)^2\ge0\\\left(x+y-5\right)^4\ge0\end{matrix}\right.\)
\(\Rightarrow D\ge-50\)
Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=4\end{matrix}\right.\)
`e)`\(E=\dfrac{10}{-x^2+3}\)
Ta có: \(-x^2+3\le3\)
\(\Rightarrow E\ge\dfrac{10}{3}\)
Dấu "=" xảy ra \(\Leftrightarrow x=0\)
c) Có: \(\left\{{}\begin{matrix}\left(x+2\right)^{20}\ge0\\\left(y+1\right)^{20}\ge0\end{matrix}\right.\)
với mọi x,y
\(\Rightarrow\left(x+2\right)^{20}+\left(y+1\right)^{20}\ge0\)
\(\Rightarrow\left(x+2\right)^{20}+\left(y+1\right)^{20}+75\ge75\)
\(\Rightarrow C_{min}=75\)
Dấu ''='' xảy ra khi
\(\left\{{}\begin{matrix}\left(x+2\right)^{20}=0\\\left(y+1\right)^{20}=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=-2\\y=1\end{matrix}\right.\)
d) Có: \(\left\{{}\begin{matrix}\left(x-1\right)^2\ge0\\\left(x+y-5\right)^4\ge0\end{matrix}\right.\)
với mọi x,y
\(\Rightarrow\left(x-1\right)^2+\left(x+y-5\right)^4\ge0\)
\(\Rightarrow\left(x-1\right)^2+\left(x+y-5\right)^4-50\ge-50\)
\(\Rightarrow D_{min}=-50\)
Dấu ''='' xảy ra khi
\(\left\{{}\begin{matrix}\left(x-1\right)^2=0\\\left(x+y-5\right)^4=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=1\\y=4\end{matrix}\right.\)