\(P=\dfrac{x^2+x+1}{\left(x-1\right)^2}\)
Điều kiện: x≠ \(1\)
Ta có:
\(P=\dfrac{\left(x^2-2x+1\right)+\left(3x-3\right)+3}{\left(x-1\right)^2}\)
\(=\dfrac{\left(x-1\right)^2+3\left(x-1\right)+3}{\left(x-1\right)^2}\)
\(=1+\dfrac{3}{x-1}+\dfrac{3}{\left(x-1\right)^2}\)
\(=3\left[\left(\dfrac{1}{x-1}\right)^2+2.\dfrac{1}{x-1}.\dfrac{1}{2}+\dfrac{1}{4}\right]+\dfrac{1}{4}\)
\(=3\left(\dfrac{1}{x-1}+\dfrac{1}{2}\right)^2+\dfrac{1}{4}\) ≥ \(\dfrac{1}{4}\) (Vì \(3\left(\dfrac{1}{x-1}+\dfrac{1}{2}\right)^2\text{≥}0\) )
Min P=\(\dfrac{1}{4}\) ⇔\(x=-1\)