Chọn A.
Chú ý: HS có thể sử dụng chưc năng MODE 7 trên MTCT đẻ giải các bài toán tìm GTLN, GTNN của hàm số trên một đoạn.
Chọn A.
Chú ý: HS có thể sử dụng chưc năng MODE 7 trên MTCT đẻ giải các bài toán tìm GTLN, GTNN của hàm số trên một đoạn.
Tìm giá trị lớn nhất của hàm số y = x + 1 x 2 + 1 trên đoạn [-1; 2].
A. - 2
B. 2
C. 2
D. - 2
Cho hàm số y=f(x) liên tục, không âm trên R thỏa mãn f ( x ) . f ' ( x ) = 2 x f ( x ) 2 + 1 và f(0)=0. Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y=f(x) trên đoạn [1;3] lần lượt là:
A. M=20;m=2
B. M = 4 11 ; m = 3
C. M = 20 ; m = 2
D. M = 3 11 ; m = 3
Cho hàm số y = − x 2 + 2 , khi x ≤ 1 x , k h i x > 1 . Tìm giá trị lớn nhất của hàm số trên đoạn − 2 ; 3
A. max − 2 ; 3 y = − 2
B. max − 2 ; 3 y = 2
C. max − 2 ; 3 y = 1
D. max − 2 ; 3 y = 3
Biết rằng m là một số dương để bất phương trình m x ≥ 2 x + 1 nghiệm đúng với ∀ x ∈ ℝ . Giá trị lớn nhất của hàm số y = x + ln m x - 1 , x ∈ 2 ; 4 thuộc đoạn nào dưới đây
A. [1;2]
B. [2,5;5]
C. [5;6]
D. [7;9]
Cho hàm số y = x + 1 x - 1 . Gọi M là giá trị lớn nhất và m là giá trị nhỏ nhất của hàm số trên đoạn [-5;-1]. Tính M+m
A. -6
B. 2 3
C. 3 2
D. 6 5
Giá trị nhỏ nhất, giá trị lớn nhất của hàm số y = x = ln(x) trên đoạn 1 2 ; e lần lượt là
A. 1 và e - 1
B. 1 và e
C. 1 2 + ln 2 và e - 1
D. 1 và 1 2 + ln 2
Cho hàm số f ( x ) = sin x - m sin x + 1 . Tìm giá trị của tham số m để giá trị lớn nhất của hàm số trên đoạn 0 ; 2 π 3 bằng -2?
A. m = 5
B. m = 5 m = 2
C. m = 2
D. m = 3
Cho các mệnh đề :
1) Hàm số y=f(x) có đạo hàm tại điểm x 0 thì nó liến tục tại x 0 .
2) Hàm số y=f(x) liên tục tại x 0 thì nó có đạo hàm tại điểm x 0 .
3) Hàm số y=f(x) liên tục trên đoạn [a;b] và f(a).f(b)<0 thì phương trình f(x) có ít nhất một nghiệm trên khoảng (a;b).
4) Hàm số y=f(x) xác định trên đoạn [a;b] thì luôn tồn tại giá trị lớn nhất và giá trị nhỏ nhất trên đoạn đó.
Số mệnh đề đúng là:
A. 2
B. 4
C. 3
D. 1
Cho hàm số f x = x − 1 2 a x 2 + 4 a x − a + b − 2 , với a , b ∈ ℝ . Biết trên khoảng − 4 3 ; 0 hàm số đạt giá trị lớn nhất tại x = -1. Hỏi trên đoạn − 2 ; − 5 4 hàm số đạt giá trị nhỏ nhất tại
A. x = − 2.
B. x = − 3 2 .
C. x = − 4 3 .
D. x = − 5 4 .
Cho hàm số y = f(x) liên tục trên ℝ có đồ thị như hình vẽ bên. Xét hàm số g x = f x + 3 x − 1 + 2 m . Tìm m để giá trị lớn nhất của g(x) trên đoạn [-1;0] bằng 1.
A. m = - 1
B. m = - 2
C. m = - 1 2
D. m = 1