Cho hàm số f(x)=(2 x +m)/(√x+1) với m là tham số thực, m>1. Gọi S là tập tất cả các giá trị nguyên dương của m để hàm số có giá trị lớn nhất trên đoạn [0;4] nhỏ hơn 3. Số phần tử của tập S là
A. 1
B. 3
C. 0
D. 2
Cho hàm số f x = x - m 2 + m x + 1 . Tìm giá trị của tham số m để giá trị nhỏ nhất của hàm số f(x) trên đoạn [ 0;1 ] bằng -2
A. m ∈ - 1 ; 2
B. m ∈ 1 ; - 2
C. m ∈ 1 ; 2
D. m ∈ - 1 ; - 2
Cho hàm số y = x − m 2 x + 8 với m là tham số thực. Giả sử m 0 là giá trị dương của tham số m để hàm số có giá trị nhỏ nhất trên đoạn 0 ; 3 bằng − 3. Giá trị m 0 thuộc khoảng nào trong các khoảng cho dưới đây?
A. 20 ; 25 .
B. 5 ; 6 .
C. 6 ; 9 .
D. 2 ; 5 .
Số các giá trị thực của tham số m để giá trị nhỏ nhất của hàm số y = x - m 2 + m x + 1 trên đoạn [0;1] bằng -2 là:
A. 2
B. 0
C. 3
D. 1
Tổng giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x + m x + 1 trên đoạn [1;2] bằng 8 (m là tham số thực). Khẳng định nào sau đây là đúng?
A. 0 < m < 4
B. 4 < m < 8
C. 8 < m < 10
D. m > 10
Tìm tất cả các giá trị của m để giá trị nhỏ nhất của hàm số f x = 2 x + m − 1 x + 1 trên đoạn [1;2] bằng 1
A. m=3
B. m=2
C.m=0
D. m=1
Tìm tất cả các giá trị của m để giá trị nhỏ nhất của hàm số f x = 2 x + m − 1 x + 1 trên đoạn 1 ; 2 bằng 1
A. m = 3
B. m=2
C. m=0
D. m=1
Cho hàm số y = m x + 1 2 x − 1 (m là tham số, m ≠ 2 ). Gọi a, b lần lượt giá trị lớn nhất, giá trị nhỏ nhất của hàm số trên 1 ; 3 . Khi đó có bao nhiêu giá trị của m để a . b = 1 5 .
A. 0
B. 2
C. 1
D. 3
Có tất cả bao nhiêu giá trị của tham số m để giá trị lớn nhất của hàm số y = x 2 − 2 x + m trên đoạn [-1;2] bằng 5.
A. 3
B. 1
C. 2
D. 4