Biết \(sinx+cosx=m\).
Tính giá trị biểu thức sau theo m: \(sin^3x+cos^3x\)
a) \(1-cot^4x=\frac{2}{sin^2x}-\frac{1}{sin^4x}\)
b)\(\frac{1-2sinx.cosx}{cos^2-sin^2}\)\(=\frac{1-tanx}{1+tanx}\)\(\)
c)\(\frac{sin^2x}{sinx-cosx}+\frac{sinx+cosx}{1-tanx}=sinx+cosx\)
d)\(\sqrt{\frac{1+cosx}{1-cosx}}-\sqrt{\frac{1-cosx}{1+cosx}}=\frac{2.cosx}{|sin|}\)
e)\(tan^3x+tan^2x+tanx+1=\frac{sinx+cosx}{cos^3x}\)
Tìm giá trị nhỏ nhất m của biểu thức \(P=sin^2x+2cos^2x\)
Biết sin an pha = 4/5 với 90 độ nhỏ hơn an pha nhỏ hơn 180 độ. Giá trị biểu thức : M = 3sin an pha +2cos An pha / 6 + 16 cot ^2 an pha
Cho Sin a (alpha) = 3/5 và 90° < a < 180°. Tính giá trị biểu thức A= 2cos²a - 5tan²a
Tính giá trị các biểu thức sau:
a) A = a bình sin 90 độ + b bình cos 90 độ + c bình cos 180 độ
b) B = 3 - sin bình 90 độ + 2cos bình 60 độ - 3 tan bình phương 45 độ
c) C = sin bình phương 45 độ - 2 sin bình 50 độ +3 cos bình 45 độ - 2 sin bình 40 độ + 4 tan 55 độ. tan 35 độ
\(\dfrac{sinx+cosx}{sinx}=\dfrac{sinx+cos^2\dfrac{x}{2}-sin^2\dfrac{x}{2}}{2cos\dfrac{x}{2}sin\dfrac{x}{2}}\)
\(0< x< 90\), chứng minh
rút gọn biểu thức P= sin(π/2-alpha)+cos(alpha+5π) a0 b 2cos alpha c 2 sin alpha d1
Cho biết cotx = 1/2. Giá trị biểu thức A= 2 sin 2 x - sin x . cos x - cos 2 x bằng
A. 6.
B. 8.
C. 10.
D. 12.