a: ĐKXĐ: \(3x^2+6x\ne0\)
=>\(x^2+2x\ne0\)
=>\(x\cdot\left(x+2\right)\ne0\)
=>\(x\notin\left\{0;-2\right\}\)
b: ĐKXĐ: \(x^3+64\ne0\)
=>\(x^3\ne-64\)
=>\(x\ne-4\)
c: ĐKXĐ: \(x^2-1\ne0\)
=>\(x^2\ne1\)
=>\(x\notin\left\{1;-1\right\}\)
a: ĐKXĐ: \(3x^2+6x\ne0\)
=>\(x^2+2x\ne0\)
=>\(x\cdot\left(x+2\right)\ne0\)
=>\(x\notin\left\{0;-2\right\}\)
b: ĐKXĐ: \(x^3+64\ne0\)
=>\(x^3\ne-64\)
=>\(x\ne-4\)
c: ĐKXĐ: \(x^2-1\ne0\)
=>\(x^2\ne1\)
=>\(x\notin\left\{1;-1\right\}\)
Rút gọn các phân thức sau:
a) \(\dfrac{5x}{10}\)
b)\(\dfrac{4xy}{2y}\) (y≠0)
c)\(\dfrac{5x-5y}{3x-3y}\) (x≠y)
d) \(\dfrac{x^2-y^2}{x+y}\)(chưa có điều kiện xác định)
e) \(\dfrac{x^3-x^2+x-1}{x^2-1}\)(chưa có điều kiện xác định)
f) \(\dfrac{x^2+4x+4}{2x+4}\)(chưa có điều kiện xác định)
Tìm điều kiện của x để phân thức sau xác định:
1) \(\dfrac{5-x}{x^2-3x}\)
2) \(\dfrac{3x}{2x+3}\)
Cho biểu thức : \(P=1+\dfrac{x+3}{x^2+5x+6}:\left(\dfrac{8x^2}{4x^3-8x^2}-\dfrac{3x}{3x^2-12}-\dfrac{1}{x+2}\right)\)
a, Tìm điều kiện xác định
b, Rút gọn P
c, Tìm giá trị của x để P = 0, P = 1
d, Tìm các giá trị của x để P > 0.
cho phân thức:A=\(\dfrac{x^2+3}{3x+9}\)
a) Tìm điều kiện xác định của A
b) Tính giá trị của A tại x=2
tìm điều kiện để các phân thức sau có nghĩa và tìm mẫu chung của chúng:
a,\(\dfrac{5}{2x-4};\dfrac{4}{3x-9};\dfrac{7}{50-25x}\)
b,\(\dfrac{3}{2x+6};\dfrac{x-2}{x^2+6x+9}\)
c,\(\dfrac{x^4+1}{x^2-1};x^2+1\)
\(A=\dfrac{x^2-2x+1}{x^2-1}\)
a) tìm điều kiên xác định của phân thức
b)rút gọn phân thức
c)tính giá trị của phân thức tại x=3
BÀI5
\(B=\dfrac{6x-2y}{9x^2-y^2}\)
a)tìm điều kiện xác định của phân thức
b)rút gọn phân thức
c)tính giá trị của phân thức tại x=1 y=-1/2
Nhân phân thức:
a)\(\dfrac{3-3x}{x^2-9}\).\(\dfrac{x-3}{x-1}\)
b)\(\dfrac{6x+4}{x^2-4}\).\(\dfrac{x^2-2x}{3x+2}\)
Cho biểu thức:
A=(\(\dfrac{x+1}{x-1}\)-\(\dfrac{x-1}{x+1}\)) . \(\dfrac{5x-5}{2x}\)
A)tìm điều kiện xác định của A
b) Rút gọn A
c)tìm giá trị của A tại x=3;x=-1
em cảm ơn nhiều nhiều ạ !!
Tìm ĐIỀU KIỆN XÁC ĐỊNH của phương trình \(\dfrac{x}{2\left(x-3\right)}\)+\(\dfrac{x}{2\left(x+1\right)}\)=\(\dfrac{2x}{\left(x+1\right)\left(x-3\right)}\)và phương trình \(\dfrac{6}{x-2}\)=\(\dfrac{7}{-x-3}\)