Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng P : 2 x + 2 y + z + 6 = 0 . Tìm tọa độ điểm M thuộc tia Oz sao cho khoảng cách từ M đến (P) bằng 3.
A. M(0;0;21)
B. M(0;0;3)
C. M(0;0;3), M(0;0;-15)
D. M(0;0;-15)
Trong không gian Oxyz, cho hai đường thẳng △ : x + 3 1 = y - 1 1 = z + 2 4 và mặt phẳng (P): x+y-2z+6=0. Biết △ cắt mặt phẳng (P) tại A, M thuộc △ sao cho A M = 2 3 . Tính khoảng cách từ M tới mặt phẳng (P).
A. 2
B. 2
C. 3
D. 3
Điểm E(4;5;5), mặt phẳng (P): x-2y+2z+6=0 và đường thẳng d : x + 1 2 = y - 3 - 1 = z - 2 1 . Tìm tọa độ điểm M có hoành độ nhỏ hơn 2 nằm trên đường thẳng d có khoảng cách từ M tới mặt phẳng (P) bằng EM.
Trong không gian Oxyz, tìm những điểm M trên trục Ox sao cho khoảng cách từ M đến mặt phẳng (P): x - 2y - 2z + 1 = 0 bằng 2
A. M(5;0;0) hoặc M(-7;0;0)
B. M(17;0;0) hoặc M(-19;0;0)
C. M(5;0;0)
D. M(17;0;0)
Cho điểm M thuộc tia Oz thỏa mãn khoảng
cách từ M đến mặt phẳng ( α ): 2x + 2y - z = 0
bằng 2. Tọa độ điểm M là:
Trong không gian Oxyz, tìm những điểm M trên tia Oy sao cho khoảng cách từ điểm M đến mặt phẳng (P): x + 2y - 2z + 1 = 0 bằng 3
A. M(0;13;0)
B. M(0;-5;0)
C. M(0;4;0) hoặc M(0;-5;0)
D. M(0;4;0)
Trong không gian Oxyz, cho mặt cầu (S): ( x + 1 ) 2 + ( y - 1 ) 2 + ( z - 2 ) 2 = 9 và mặt phẳng (P): 2x-2y+z+14=0. Gọi M ( a ; b ; c ) là điểm thuộc mặt cầu (S) sao cho khoảng cách từ M đến mặt phẳng (P) lớn nhất. Tính T = a + b + c .
Trong không gian Oxyz, cho hai mặt phẳng (P): x+2y+2z-10=0 và (Q): x+2y+2z-3=0. Điểm M là giao của mặt phẳng (P) với trục Oz. Khoảng cách từ M tới mặt phẳng (Q) bằng
A. 8 3
B. 7 3
C. 3
D. 4 3
Cho điểm M(1;4;2) và mặt phẳng α : x+y+z-1=0. Tìm khoảng cách từ điểm M đến mặt phẳng α