Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng P : 2 x + 2 y + z + 6 = 0 . Tìm tọa độ điểm M thuộc tia Oz sao cho khoảng cách từ M đến (P) bằng 3.
A. M(0;0;21)
B. M(0;0;3)
C. M(0;0;3), M(0;0;-15)
D. M(0;0;-15)
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng α : 2 x - 2 y + z - 3 = 0 và điểm M(1;-2;13). Tính khoảng cách từ điểm M đến mặt phẳng (a).
Trong mặt phẳng tọa độ Oxyz, cho mặt phẳng
( α ): x -2y + 2z - 11 = 0 và điểm M (0;1;1). Tính
khoảng cách h từ điểm M đến mặt phẳng ( α ).
A. h = 1
B. h = 2
C. h = 3
D. h = 4
Cho số phức z thỏa mãn iz + 2 - i = 0. Khoảng cách từ điểm biểu diễn của z trên mặt phẳng tọa độ Oxy đến điểm M(3;-4) là:
A. 2 5
B. 13
C. 2 10
D. 2 2
Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : x - 5 2 = y + 7 2 = z - 12 - 1 và mặt phẳng ( α ) : x+2y-3z-3=0. Gọi M là giao điểm của d với ( α ) , A thuộc d sao cho A M = 14 . Tính khoảng cách từ A đến mặt phẳng ( α )
A. 2
B. 3.
C. 6.
D. 14
Cho các số phức z thỏa mãn i z + 2 - i = 0 Tính khoảng cách từ điểm biểu diễn hình học của z trên mặt phẳng tọa độ Oxy đến điểm M(3; -4)
A. 2 5
B. 13
C. 2 10
D. 2 2
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P): 2x-2y-z+3=0 và điểm M 1 ; − 2 ; 13 . Tính khoảng cách d từ điểm M đến mặt phẳng (P)
A. d = 4 3
B. d = 7 3
C. d = 10 3
D. d = - 4 3
Trong không gian với hệ tọa độ Oxy, cho mặt phẳng (P): 2y-z+3=0 và điểm A (2;0;0). Mặt phẳng (α) đi qua A, vuông góc với (P), cách gốc tọa độ O một khoảng bằng 4/3 và cắt các tia Oy, Oz lần lượt tại các điểm B, C khác O. Thể tích khối tứ diện OABC bằng:
A. 8.
B. 16
C. 8/3
D. 16/3
Trong không gian với hệ tọa độ Oxyz, cho hai điểm A (1;2;3), B (0;4;5). Gọi M là điểm sao cho MA=2MB. Khoảng cách từ điểm M đến mặt phẳng (P): 2x-2y-z+6=0 đạt giá trị nhỏ nhất xấp xỉ là bao nhiêu?
A.1,72
B.1,47
C.1,64
D.1,59