Tìm các đa thức A và B, biết:
a) A + (x2- 4xy2 + 2xz - 3y2 = 0
b) Tổng của đa thức B với đa thức (4x2y + 5y2 - 3xz +z2) là một đa thức không chứa biến x
Tìm đa thức A biết: A + (x2 + y2) = 5x2 + 3y2 – xy
Tìm đa thức P và đa thức Q, biết:
P + (x2 – 2y2) = x2 - y2 + 3y2 – 1
Tìm các đa thức A và B biết: a) A+(x^2 - 4xy^2 + 2xz -3y^2)=0 b) Tổng của đa thức B với đa thức (4x^2y + 5y^2 - 3xz + z^2) là một đa thức không chứa biến x
Tìm đa thức A biết: a) A ( 3x2y - 2xy3 ) = 2x2y - 4xy3 b) A ( 3x2 - 6xy ) = 4x2 10 xy = 2y2 c) A - ( 2xy 4y2) = 3x2 - 6xy 5y2 d) ( 6x2y2 - 12 xy- 7xy3) A = 0
Tìm các đa thức A và B biết:
a) A+(x^2 - 4xy^2 + 2xz -3y^2)=0
b) Tổng của đa thức B với đa thức (4x^2y + 5y^2 - 3xz + z^2) là một đa thức không chứa biến x
Tìm các đa thức A và B biết
a) A+(x^2-4xy^2+2xz-3y^2)=0
b)Tổng của đa thức B với đa thức (4x^2y+5y^2-3xz+z^2) là 1 đa thức không chứa biến x
(Nghỉ dịch từ ngày 28/2/2022)
Bài 1:
a) Cho hai đa thức: M = 2x2 – 2xy – 3y2 + 1; N = x2 – 2xy + 3y2 – 1
Tính M + N; M – N.
b) Cho hai đa thức: P(x) = x3 – 6x + 2; Q(x) = 2x2 - 4x3 + x - 5
+ Tính P(x) + Q(x)
+ Tính P(x) - Q(x)
Bài 2: Tìm x biết:
a) (x - 8 )( x3+ 8) = 0; b) (4x - 3) – ( x + 5) = 3(10 - x)
Bài 3: Cho đa thức: P(x) = 5x3 + 2x4 – x2 + 3x2 – x3 – 2x4 + 1 – 4x3.
a) Thu gọn và xắp sếp các hạng tử của đa thức trên theo lũy thừa giảm của biến.
b) Tính P(1) và P(–1).
Bài 4: Tính nhanh (nếu có thể):
Bài 5: Cho tam giác ABC có AB = AC = 5cm, BC = 6cm. Đường trung tuyến AM xuất phát từ đỉnh A của tam giác ABC.
a) Chứng minh ΔAMB = ΔAMC và AM là tia phân giác của góc A.
b) Chứng minh AM vuông góc với BC.
c) Tính độ dài các đoạn thẳng BM và AM.
d) Từ M vẽ ME AB (E thuộc AB) và MF AC (F thuộc AC). Tam giác MEF là tam giác gì? Vì sao?
Bài 6: Cho ΔABC cân có AB = AC = 5cm, BC = 8cm. Kẻ AH vuông góc với BC.
a) Chứng minh: HB = HC.
b) Tính độ dài AH.
c) Kẻ HD vuông góc với AB (D∈AB), kẻ HE vuông góc với AC (E∈AC).
Chứng minh ΔHDE cân.
d) So sánh HD và HC.