P + (x2 – 2y2) = x2 - y2 + 3y2 – 1
⇒ P = (x2 – y2 + 3y2 – 1) – (x2 – 2y2)
= x2 – y2 + 3y2 – 1 – x2 + 2y2
= (x2 – x2) + ( – y2 + 3y2+ 2y2) – 1
= 0+ 4y2 – 1= 4y2 – 1.
Vậy P = 4y2 – 1.
P + (x2 – 2y2) = x2 - y2 + 3y2 – 1
⇒ P = (x2 – y2 + 3y2 – 1) – (x2 – 2y2)
= x2 – y2 + 3y2 – 1 – x2 + 2y2
= (x2 – x2) + ( – y2 + 3y2+ 2y2) – 1
= 0+ 4y2 – 1= 4y2 – 1.
Vậy P = 4y2 – 1.
Cho các đa thức A = 4 x 2 - 5 x y + 3 y 2 ; B = 3 x 2 + 2 x y + y 2 ; C = - x 2 + 3 x y + 2 y 2 . Tính A + B + C
A. 7 x 2 + 6 y 2
B. 5 x 2 + 5 y 2
C. 6 x 2 + 6 y 2
D. 6 x 2 - 6 y 2
Cho các đa thức A = 4 x 2 - 5 x y + 3 y 2 ; B = 3 x 2 + 2 x y + y 2 ; C = - x 2 + 3 x y + 2 y 2 . Tính A - B - C
A. - 10 x 2 + 2 x y
B. - 2 x 2 - 10 x y
C. 2 x 2 + 10 x y
D. 2 x 2 - 10 x y
Cho các đa thức A = 4 x 2 - 5 x y + 3 y 2 ; B = 3 x 2 + 2 x y + y 2 ; C = - x 2 + 3 x y + 2 y 2
Tính C - A - B
A. 8 x 2 + 6 x y + 2 y 2
B. - 8 x 2 + 6 x y - 2 y 2
C. 8 x 2 - 6 x y - 2 y 2
D. 8 x 2 - 6 x y + 2 y 2
Cho các đa thức A = 4 x 2 - 5 x y + 3 y 2 ; B = 3 x 2 + 2 x y + y 2 ; C = - x 2 + 3 x y + 2 y 2 . Tính C - A - B
A. 8 x 2 + 6 x y + 2 y 2
B. - 8 x 2 + 6 x y - 2 y 2
C. 8 x 2 - 6 x y - 2 y 2
D. 8 x 2 - 6 x y + 2 y 2
tìm đa thức B và tính giá trị của đa thức B tại x=1; y=-1/3 biết:
x2-2y2+2/3 x2 y3+B = 2x2+y2+2/3 x2 y3
Tìm đa thức A biết: A + (x2 + y2) = 5x2 + 3y2 – xy
Tìm giá trị của đa thức 3x4+5x2y2+2x4+2y2 biết rằng x2+y2
a) Tìm giá trị của đa thức A = 3x4 + 5x2y2 + 2y4 + 2y2, biết rằng x2 + y2 = 2
b) Chứng tỏ rằng đa thức A(x) = 3x4 + x2 + 2018 không có nghiệm.
c) Xác định đa thức bậc nhất P(x) = ax + b biết rằng P(-1) = 5 và P(-2) = 7.
Tìm giá trị của đa thức 3x4+5x2y2+2x4+2y2 biết rằng x2+y2=2